
Description Formulae

Magnitude and direction of a r2 � x2 � y2 or r � �(x2 ��y2)�
vector given in component form and

r � xi � yj � � tan�1 ��
x
y

��

Resolving a vector into x � r cos � and y � r sin �
perpendicular components

Relationship between distance, 
speed and time

or

where D � Distance s � displacement
S � Speed v � velocity
T � Time t � time

Average velocity Average velocity �

Average speed Average speed �

The Uniform Acceleration Formulae v � u � at
(The SUVAT formulae) s � ut � �

1
2�at2

s � vt � �
1
2�at2

v2 � u2 � 2as
s � �

1
2�(u � v)t

Gravity and Weight Acceleration due to gravity: g � 9.8 ms�2

Weight force: mg N

Newton’s First Law A body will continue to remain at rest or move at constant speed in a straight line 
unless an external force makes it act otherwise.

Newton’s Second Law A resultant force acting on a body produces an acceleration which is proportional 
to the resultant force.
If we use SI units: F � ma

Newton’s Third Law For every action there is an equal and opposite reaction.

The definition of momentum momentum � mv

The definition of impulse J � Ft

The Impulse–momentum principle impulse = change in momentum
or J � mv � mu

The Principle of Conservation of total momentum before collision � total momentum after collision
Linear Momentum (CLM) or mAuA � mBuB � mAvA � mBvB

Friction 0 � F � Fmax, where Fmax � �R

The moment of a force M � Fd

The moment of a force at an angle M � Fd sin �,

Conditions for Equilibrium of a For equilibrium, the Resultant force must be zero.
particle i.e. R � 0, where 0 is the zero vector

or R � 0i � 0j

Conditions for Equilibrium of a The Resultant force in any direction must be zero (R � 0) and 
rigid body The Sum of the Moments about any point must be zero (M � 0)

change in distance
���

change in time

change in displacement
���

change in time

The ‘If all else fails’ list of Essential Formulae

r

x
�

y

D s
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What is mechanics?
It is the mathematical study of physical situations.

Sometimes it is called applied mathematics.
This is because, like statistics and discrete mathematics, it is an
example of how pure mathematics can be used to give information about
‘real-life’ situations.

The following three words are traditionally associated with mechanics:
kinematics, statics and dynamics.
Why not research for yourself what these terms mean?
(You can try looking in a mathematical dictionary. However, they will be
explained in the next section!)

In this chapter you will learn:
● about the modelling cycle,
● how to simplify real-life objects,
● the names for the most common models,
● how to choose the right model for a given problem,
● the meanings of typical modelling assumptions.

Modelling reality

Modelling is the name for the process of fitting mathematics to a real-life
situation. It includes deciding what to put in and what to leave out.

The complexity of the model depends upon how accurate we need the
answer to be. Simple models work best for simple problems.

This flow diagram is one way of describing the modelling process:

What do these words mean?
What is the significance of the arrows?

2

1 Basic Ideas

Define Model

Interpret Analyse
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The four stages of the modelling process are explained like this:

These four steps follow a natural sequence, indicated by the arrows.

Why is there an arrow from the last box back to the first?
After considering the results of our calculations, we may choose to revise
our initial model. It may need to include new or different features. 
This will lead to a refined model for a second attempt at the problem.

This is the ‘modelling cycle’ and applies equally well to statistics or discrete
mathematics or any real-life use of mathematics.

Kinematics is the study of the motion of objects, looking at distance,
speed, time and acceleration. (Kinetic means moving.)

If the model includes the action of forces, then two other words are used.
Dynamics relates to moving objects. (Dynamic means changing.)
Statics considers how forces balance to prevent movement. 
(Static means still.)

3

Define
Consider the problem being asked and the answers required.
Decide what information is needed and what can be ignored.

Model
Simplify the problem down to its basics.
Choose the rules or formulae to use.
If necessary, estimate values for unknown quantities.
Make your assumptions clear.

Analyse
Using the rules chosen and the quantities given, work out the answer to
the problem as you have modelled it.

Interpret
Review your answers in the light of the question.
Do they make sense? Are they accurate enough?
Are there other factors that need to be considered?

Example 1
Suppose we need to calculate the distance travelled by a golf ball.
a) Can we ignore the size of the ball?
b) Is it safe to ignore air resistance?
c) What factors must we include in our model?

a) The size of the ball is so small compared to the distance it travels that 
we can safely ignore it.

b) Since air resistance is greater for larger surface areas and golf balls 
are relatively small, it can be ignored, but if a really accurate answer is 
needed it should be considered.

c) Essential factors are: the mass of the ball, the angle at which it is struck, 
its initial speed, gravity, the height of the ground where it is struck and 
where it lands, the time it is in the air.

TAKE IN A/W A1.1
TO BE SUPPLIED

TAKE IN PHOTO P1.4
footballer (goalie)
TO BE SUPPLIED
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4

Simplifying objects

What is the main feature of everyday objects that we need to simplify?
It is their shape that we ignore. Usually it is obvious how to replace the
object with a simple mathematical model.

There are four main mathematical models that can be used. 
The one we choose will depend on the question being asked.

The easiest model is the ‘particle’ or ‘point mass’. This means we consider
the object to be reduced to a single point, but still to have the same mass.

We only use a ‘rigid-body’ model if the distances or angles in the object are
important to the solution of the problem.

Examples 2–5 show situations where each of these models might be used. As
you look at the diagrams, try to think of some more examples of your own.

The important thing to remember is that the model chosen depends also on
the question being asked. In the example above, the length of the car is
unimportant because it is far less than the distance it travels.

If the question were about how a car accelerates and decelerates as it
travels over speed bumps placed 5 metres apart, the length of the car
would matter!

Common models

Particle ● all the mass acts at a single point with no volume or 
surface area

● air resistance is ignored in this model

Rigid body ● a simple shape with one or more parts where lengths are fixed
● it does not change shape

Rod ● a line whose length equals the object, but with no thickness
● it is a simple example of a rigid body

Lamina ● a flat plane, usually consisting of one or more common shapes
● its thickness is ignored
● it is another type of rigid body

Example 2
A car is driven for 500 metres along a straight section of motorway at 30 m s�1.

As it is travelling a fair distance, the car can be modelled as a particle.

500 m

30 m s�1
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Does it matter if the handle is heavier than the rest of the umbrella?
We usually consider a rod to be ‘uniform’. This means that the mass is
distributed equally throughout its length. 
We are ignoring the fact that the handle may be particularly heavy
compared to the rest of the umbrella.

Like a uniform rod, we consider a uniform lamina to have its mass spread
out equally throughout its area.

How would this last example change if there were a bracing strut between
the two sides?
This would become a ‘framework’. This is the name for structures made up
of connected rods. This is quite a sophisticated model and is not required
for AS level mechanics.

5

Example 3
An umbrella of length 0.9 m is leaning against a wall so that it makes an approximate angle of 25° with the wall.

As the umbrella is basically a straight object, it can be considered to be a rod.

25°0.9 m

Example 4
A flat earring in the shape of an equilateral triangle of side 2.7 cm is suspended from a point two-thirds of the
way along one side.

The shape and lengths are important to this question, but as the earring is flat and presumably quite thin, a
lamina is the best model.

2.7 cm

2.7 cm

2.7 cm

Example 5
A folding step ladder of total length 9 m is opened out so that the angle between the sides is 70°.

This object needs more than just a single rod to represent it. A rigid body made up of two uniform rods will be the
best model.

70°
4.5 m4.5 m
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Assumptions

When we define the model for a particular situation, we also consider any
assumptions we will make. These are the simplifications we permit.

As we begin the study of mechanics it is best to choose the simplest
possible model, but recognise that this limits the accuracy of our
calculations. Later on, as we add more complicated modelling ideas, we 
can use increasingly sophisticated models to achieve more precise 
results.

Suppose a toy car is rolling down a slope.
What features of the real-life situation could we ignore?
We would probably decide that the effect of air resistance would be too
small to include in our model. If this were outdoors, we would ignore the
wind speed and direction too. We might also assume the slope has no dips
or bumps and that the car travels in a perfectly straight line.
We will definitely assume that gravity makes the car go down the hill.

Is gravity always the same?
In fact there are variations depending on where you are on the Earth’s
surface and how far you are above or below sea level.
In general we stick to one value for the acceleration due to gravity 
(g � 9.8 m s�2) and assume that it will apply throughout the problem.
We will look at gravity in more detail later, in chapter 5.

You need to learn the following words that regularly feature in exercises
and examination questions to indicate the assumptions being made.

The assumptions we make allow us to solve the problem more easily.
However, when we come to interpret our answers, it is a good idea to
consider how these assumptions might have affected the answer.

Suppose we are calculating the distance that a netball travels if thrown
through the air. Imagine our model ignored air resistance and produced an
answer of 20 m. 

How might air resistance have affected the outcome?
Air resistance would have acted against the motion of the netball and so
reduced the distance of 20 m a little.
It is not necessary to guess by how much the distance might have changed,
but it is important to have some idea of the possible effect.

The netball might also be spinning. What difference might that make?

Typical assumptions

Light ● having no mass

Inextensible/inelastic ● does not stretch (e.g. for a connecting cable)

Smooth ● there is no friction

Rough ● friction is acting

No air resistance ● this force is ignored (e.g. for a particle)

TAKE IN PHOTO P1.7
toy car on slope

TO BE SUPPLIED

TAKE IN PHOTO P1.8
netball scene

TO BE SUPPLIED
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Summary
● Mechanics is the study of modelling real-life situations in terms of mathematics.

It can be broken into this four-step cycle: Define → Model → Analyse → Interpret (→ define).
● Three important aspects of mechanics are: 

Kinematics – acceleration, speed, time and distance
Dynamics – how forces produce or change motion
Statics – how forces balance to prevent motion.

● The most common model for an object is the particle, which has no surface area and therefore we can
ignore air resistance.

● If the lengths or the shape are important we use the rod, lamina or rigid body.
● Assumptions are made to keep the mathematical model simple by ignoring certain factors.
● The nature of the question helps to determine the appropriate model and the assumptions to be made.

End of Chapter Questions
1 Can you complete these sentences?

a) Mechanics is the study of …

b) The modelling cycle includes these four 
stages: …

c) Three words classically associated with
mechanics are: …

d) A ‘point mass’ is another name for a …

e) If lengths are important, the model used is a …

f) Air resistance is ignored in the … model.

g) A cable does not stretch if it is inextensible or …

h) Simplifications are also called …

2 What word describes the assumption that an
object’s mass is small enough to be ignored?

3 Which model is always used for a flat object?

4 Why is it reasonable to ignore air resistance on a
particle?

5 Make a list of at least six features that would be
ignored by modelling a car as a particle.

6 Match up each of these words {Kinematics, Statics,
Dynamics} with its meaning from this list
{changing, still, moving}.

7 Think of a real-life situation where air resistance
would not be ignored.

8 Which model would you use for a plank resting
against a wall?

9 What information would you collect to predict how
long a textbook would take to fall to the ground
from an upper-storey classroom window?

10 What information do you need in order to study
how a barrel rolls down a sloping road?

How to make the Examiner happy
● Make sure you use the proper name for the model that is being used: particle, rod, lamina or rigid body
● Be prepared to state the modelling assumptions that apply to a specific model.
● Exam questions often include a one-liner such as “Which real-life features are ignored if a particle model is

used?” The answer will probably be “air resistance” and maybe also “rotation of the object” and “the length of
the object”
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Can you remember what a vector is?
You will have used them in the past to describe a movement on a graph.

In mechanics, vectors have a special use to help us solve problems in two
or three dimensions.

In this chapter you will learn:
● how to write down and use vectors,
● how to find the magnitude and direction of a vector,
● how to resolve a vector into perpendicular components,
● how to add, subtract and find a multiple of a vector,
● how to use vectors to represent different quantities in mechanics.

Scalars and vectors

A scalar quantity is something which has size (magnitude) but no
particular direction. It is just a single number.

A vector quantity has size and direction. It needs two pieces of information
to describe it fully.

Do speed and velocity mean the same thing?
No. In mechanics there is a strict difference between them.
● Speed is how fast you are going.

For example, ‘a car is travelling at 25 m s�1’.
● Velocity is how fast you are going and in which direction.

For example, ‘a car is travelling at 25 m s�1, due North’.

Out of ‘speed’ and ‘velocity’, which is the scalar and which is the vector?
Speed is the scalar. It is just one piece of information.
Velocity is the vector. It requires two pieces of information.

8

2 Using Vectors

Example 1
Is ‘time’ a scalar quantity, or is it a vector quantity?

‘Time’ is a scalar quantity, as it is not associated with a particular direction.

a

across 6, up 5

This vector is written: a � � �6
5
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Writing vectors

There are several different ways of writing vectors.
Which ones have you met before?

Look back to the vector � �. This is an example of a column vector.

We can write the same vector using ‘unit vectors’.

Did you notice that the letters representing the vectors have been written in
bold type?
This is to show clearly which letters stand for vectors, and which for
ordinary numbers (i.e. scalars). Textbooks and exam papers use this
convention.

It is not practical to do this when writing vectors by hand, so the
convention for written work is to underline the vectors.

6
5

9

The unit vectors:

i � � � j � � �

i is ‘one step across’ j is ‘one step upwards’

They are called ‘unit vectors’ because each has a length of one. (Unity � one.)

0
1

1
0

a

j

i i i i i i

j
j
j
j

We can write: a � 6i � 5j

Writing vectors by hand:
Always underline the letters that stand for vectors.

For example, if you see: a � 6i � 5j, you must write: a � 6i � 5j

O

1

2

3
y

x1

i

2 3 O

1

2

3
y

x1

j

2 3

Vector Notation
Although column vectors are used in
this chapter to introduce the concept
of a vector, examination questions will
usually present vectors in unit vector
form.

02 Ch2 pp 008-019.qxd  26/1/05  5:01 pm  Page 9



10

Magnitude and direction

How can we find the length (the magnitude) of a vector such as � �?
Since it can be drawn using a right-angled triangle, we can use Pythagoras’
Theorem to find the longest side.

What about the angle the vector a makes with the horizontal direction?
As it is a right-angled triangle, we can use trigonometry.

6
5

Example 2
What is the magnitude of the vector � �? 

By Pythagoras’ Theorem:

Magnitude of a � �(62 ��52)�
� �(36 �� 25)�
� �61�
� 7.81 (3 significant figures or s.f.)

This is now a scalar and not a vector, 

so we write: a � 7.81 (3 s.f.)

N.B. ‘Magnitude of a’ is also written |a|.

6
5

Finding the magnitude and direction of a vector given in
component form:

r2 � x2 � y2 or r � �(x2 ��y2)�

and

� � tan�1 ��
x
y

��
As r is a length, r � 0, so ignore the 
negative square root.

Example 3
What angle does the vector � � make with the horizontal direction? 

Using trigonometry:

opp � 5,  adj � 6  and  tan � � �
o
a
p
d
p
j

�  

tan � � �
5
6�

� � tan�1 ��
5
6

��
� � 39.8° (1 decimal place or 1 d.p.)

6
5

a

6

5

a

6

�

5

r

x

r � xi � yj

�

y

Pythagoras’ Theorem
In any right-angled triangle, the area
of the square on the hypotenuse is
equal to the sum of the areas of the
squares on the other two sides.

a2

52

62

NB: r means ‘the magnitude of r’
or |r| � r
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Sometimes the unit vectors are assigned to specific directions, such as East
and North, in order to provide the context for a question.

Did you understand the difference between displacement and distance in
the last example?
Displacement refers to the vector, but distance just means the length of this
vector.

When you are finding the direction of a vector with negative components, it
is worth drawing a sketch first, to judge if the answer makes sense. 

It is a mathematical convention to measure angles anticlockwise from the
positive x direction.
If a clockwise angle is used, it is given a negative sign.

If you research the tangent function in a Pure Maths textbook, you can find
out why it might be necessary to add on 180° to the first answer. However,
as long as you always draw a sketch, there should be no confusion.

Why were the angles given correct to 1 decimal place, and not 3 significant
figures?
In example 5, we know that the two angles mentioned should add up to
180°. If the final answer were given as 162°, they would appear to add up to
180.4°, which might be confusing.

11

Example 4
After a short journey, the displacement of a cyclist is (73i � 27j) m,
where i and j are unit vectors in directions due East and due North respectively.
Assuming the journey is in a straight line, what is the total distance the 
cyclist has travelled?

Even though there is a negative j component, use Pythagoras’ Theorem, as before:

Distance � �(732 �� (�27�)2)�

� �(5329�� 729�)�

� �6058�

� 77.8 m (3 s.f.)

Example 5
Find the angle between the x direction (i.e. horizontal, to the right) and the vector � �.
Using the normal rule: � � tan�1 ��

x
y

��
� tan�1 ����

4
1

2
2

��
� �18.4° (1 d.p.)

Looking at the diagram, it is clear that we need an angle of
� � 180° � � � 180° � �18.4° � 161.6° (1 d.p.)

�12
�4

73 m

�27 m

(N)

(E)
j

i

x

x

�θ

�θ

� �

x

4

�12
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Resolving into components

We can also use trigonometry to convert a vector from a length in a given
direction to component form.
Once we have the horizontal and vertical components, we can write the
vector as a column vector or using i’s and j’s.

We will always be using sine to find the side opposite the angle and 
cosine to find the side next to (adjacent to) the angle.

Do you remember the three rules for writing down a direction as a bearing?
Bearings are always:
● measured clockwise, 
● from north,
● given using three digits.

How does this differ from the convention for measuring angles from the
x direction?
With bearings, clockwise is the chosen direction, but usually we take an
anticlockwise angle as being positive.

Mechanics questions are often written in terms of bearings.
It is always best to draw a sketch before beginning the solution.

Resolving a vector into perpendicular components:

x � r cos �

and

y � r sin �

r

x

�

y

Example 6
Express in the form ai � bj, a vector of length 12 units at an angle of 75° to the x direction.

It is always a good idea to begin with a sketch of the vector.

Label the required sides.

a � 12 � cos 75°

� 3.11 units (3 s.f.)

b � 12 � sin 75°

� 11.6 units (3 s.f.)

� vector � (3.11i � 11.6j) units

12 b

aO
75°

x

The bearing of C from
A is 360° � 40° � 320°.

N

C

A

40°

The bearing of B from
A is 060°.

N

B

A

60°

p. 11
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Example 7
A farm (F) lies at a distance of 28 km, on a bearing of 220° from an airfield (A).
Convert this displacement into a column vector, assuming East and North 
are the x and y directions.

Once again, sketch the situation first.

We need to think of the airfield as the ‘origin’ for the displacement.
It will be easiest to use the angle of 40° in our calculations.

a � 28 � sin 40°

� 18.0 km (3 s.f.) 

b � 28 � cos 40°

� 21.4 km (3 s.f.) 

Now we need to make sure that the components have negative signs, for ‘left’ and ‘down’:

� displacement � � � km�18.0
�21.4

a

b

N

F

A
180°

40°
220°

28 km

Practice
1 For the displacement vector s � (�11i � 29j) m,

find the magnitude of s and the angle it makes with
the i direction.

2 What is the magnitude of the column vector � �?
3 A cat scampers 105 m in a straight line at an angle

of 85° to a straight road. Taking i and j to act in the
direction shown in the diagram, resolve this
displacement into the form ai � bj.

4 A ship is visible on a bearing of 195° from a
lighthouse. Its distance is estimated to be 6 km.
Resolve this displacement into component form,
where i is a unit vector due East and j is a unit
vector due North.

Road

85°

Cat

105 m
j

i

8
15
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Adding vectors

Given two vectors, a � 5i � 2j and b � 7i � 6j,
how can we add them and what does the result mean?

Your first reaction is probably to treat the separate components of the
vectors like algebraic quantities and to add like terms.
This is completely correct!

So: a � b � (5i � 2j) � (7i � 6j)
� 12i � 4j

The meaning of this result 
is best seen from a diagram.

a � b is the single journey which is the short cut from the start of a to the
end of b, when a is followed by b.

What happens if we have b followed by a?
By adding we get:

b � a � (7i � 6j) � (5i � 2j)

� 12i � 4j

Is it surprising that we get the same answer?
Normal addition is commutative, meaning that you get the same answer in
whichever order you add the numbers.

Let’s look at a diagram. 

We can see for this case that the shortcut is the same vector, no matter the
order in which we travel along the two vectors.

The sum of two or more vectors is called the resultant vector.

The parallelogram rule for addition of vectors:

Consider two general vectors, a and b:

a � b � b � a

This shows that addition of vectors is 
commutative.

aa
a � b

b

b

7

6

5

2a

a � b

b

2

5

7

6

a

a � b

b

02 Ch2 pp 008-019.qxd  26/1/05  5:01 pm  Page 14



Sometimes a vector is referred to by the letters at either end.
AB�� is the vector from A to B.

In this diagram the vectors AB��, BC�� and AC�� are shown.

Using the principle of the resultant being the shortcut:

AB�� � BC�� � AC��
Do you notice how, like dominoes, the inside letters of the vector sum
match up? The answer is then the outside pair of letters.

What will be the answer to PQ�� � QR�� � RS�� � ST��?

It will be PT��.

Look at the next diagram and consider this question.

What will you get if you add: AB�� � BC�� � CD�� � DE�� � EA��?

Is it AA��? Or 0?
When a vector sum equals zero, we must write something to indicate that it

is the zero vector. We show this by 0 or 0 or 0i � 0j or � �.0
0

E D

C

B

A

A

B

C

A

AB B

15

Example 8
If p � 4i � 12j, q � �7i � 2j and r � 5i � 8j, find p � q � r.

Simply add together all the i terms and all the j terms.

p � q � r � (4i � 12j) � (�7i � 2j) � (5i � 8j)
� (4i �7i � 5i) � (12j � 2j � 8j)
� 2i � 2j
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Parallel vectors

What about 3a, or 10a, or �
1
2�a or –a?

If we follow the rules of ordinary algebra and multiply the separate
coefficients of i and j by the new number, what will that look like on a diagram?

Can you work out the effect of multiplying the vectors by these numbers?
The new vector is parallel to the original vector and the number is the
length scale factor.
The minus sign in the last example caused the vector to reverse direction.

The same principles work for vectors written in column form.

Modelling with vectors

As we study the mathematics of motion (kinematics) and of equilibrium
(statics), we will use these letters to represent common quantities:

Example 9
If a is the vector �2i � j, write down and sketch the vectors 3a, 10a, �

1
2�a and –a.

3a � 3 � (�2i � j) � �6i � 3j

10a � 10 � (�2i � j) � �20i � 10j

�
1
2�a � �

1
2� � (�2i � j) � �i � �

1
2� j

�a � �(�2i � j) � 2i � j

Example 10
Write down the vector that is four times as long and in the 

opposite direction to � �.
The required vector is: �4 � � � � � �

� � �32
�52

(�4) � (�8)
(�4) � 13

�8
13

�8
13

a1
2

a
3a

10a

(     )
(       )

–8
13

32
�52

Arrow notation
The following convention for the shapes of arrows is used throughout
this book:

force
velocity
displacement
acceleration

resultant force
resultant velocity
resultant displacement
distance, dimensions

In two or more dimensions: In one dimension or magnitude only:
s displacement x distance
u initial velocity u initial speed
v final velocity v final speed
a acceleration a acceleration
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Maths in Action: How to Get Away with a Forward Pass

One of the most important rules in rugby states that a player is only able to pass the ball to somebody who is
behind him. Without this rule, rugby would be a much less orderly game, with players scattered across the
field, but instead when players are putting together a string of passes they usually form a neat line across the
field.

A forward pass is penalised and the referee calls a scrum. The odd thing, however, is that if you were watching
a rugby game from a helicopter hovering above the pitch, you would see “forward passes” going un-penalised
all the time.

Vectors can explain why this happens.

In the diagram below, player A has the ball, and wants to pass it
to player B. Both players are running at full speed towards the
halfway line across the pitch. Viewed from our helicopter, we can
clearly see that player B is further back than player A, so the
direction in which A points the ball is indeed backwards, as the
rugby rule states.

However, consider what happens to player B while the
ball is floating in the air towards him. He will travel a
couple of metres forwards, and for the pass to be
successful, it needs to land in his hands, not two metres
behind him. This means that the actual path of the ball
must look like this:

From our helicopter we can now clearly see that the ball has gone forward! So how can A have thrown the ball
backwards yet it went forwards? The reason is that the ball DID go backwards relative to A. We can draw a
triangle of velocities to show the complete picture:

To a television viewer, this forward motion of the ball is often quite obvious, especially if the pass happens
close to a line on the pitch. But as long as player A keeps running forward, the referee is unlikely to blow his
whistle.

Halfway line

A

B

A throws here

A ends here

B here when A releases ball

B receives ball here
Ball path

Velocity of A
when ball is

released

Velocity of ball relative to A

Net velocity of ball when two vectors are added

PICTURE TO BE
INSERTED

TO BE SUPPLIED
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Summary
● Scalars have magnitude only, e.g. time, mass, speed
● Vectors have magnitude and direction, e.g. displacement, velocity, acceleration
● We can find the magnitude of a vector by using Pythagoras’ Theorem
● We can find the direction angle of a vector by using trigonometry (tangent)
● We can resolve vectors into components using sine and cosine
● Scalar multiples of vectors are parallel

End of Chapter Questions
1 Can you complete these sentences?

a) A vector quantity has magnitude and …

b) A scalar quantity only has …

c) Books show vectors by using … type.

d) Show vectors in written work by …

e) Find the magnitude of a vector by using …

f) Find the direction of a vector by using …

g) Resolve a vector into components by using …
and …

h) Scalar multiples of a vector are … to each other.

2 Is ‘density’ a scalar or a vector quantity?

3 Find the magnitude of the vector  24i � 10j.

4 What angle does the vector � � make with the
x direction?

5 A vector has length 5.8 units and is at an angle of
150° from the positive x direction. Express this
vector in the form ai � bj.

6 A displacement vector is 300 m long, with a
bearing of 312°. Write this as a column vector
taking i as a unit vector due East and j as a unit
vector due North.

7 a � � � and  b � � �. Write down a � b and

show these three vectors on a sketch.

8 A, B, C and D are the four corners of a square. 

What is AB�� � BC�� � CD�� � DA��?

9 Which of these vectors are parallel:

� �, � �, � �, � �, � �?

10 Write down the vector which is half as long and in
the opposite direction to �18i � 12j.

11 Given that u � ti � 8j and that the magnitude of u
is 17, find the two possible values of t.

12 Find, in degrees to 1 d.p., the acute angle made
with the vector j by each of the following vectors:

a) i � j b) 4i � 6j

c) �i � 9j d) 3i � 7j

13 Find, in the form ai � bj,

a) a vector of magnitude 30 in the direction of the
vector 3i � 4j,

b) a vector of magnitude 5 in the direction of the
vector 7i � 24j.

30
�6

2.5
�0.5

�25
5

10
50

5
�1

�2
3

12
�7

�17
�8
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14 Find a unit vector (a vector of length 1 unit) in the
direction

a) 6i � 8j b) 7i � 24j

c) i � j d) �2i � 6j

15 Given that the vector 3i � bj is parallel to 12i � 4j,
find the value of b.

16 Given that p � i � 3j and q � 2i � j, find the values
of a and b for which

a) p � aq is parallel to the vector i,

b) bp � q is parallel to the vector j.

17 Given that the vector (2t � 5)i � (4 � t)j is parallel
to the vector i � j, find the value of t.

18 Two particles A and B are moving in a plane. The
velocity of A at time t seconds is given by
vA � (t � 2)i � (2t � 3)j ms�1 and the velocity of B
at time t seconds is given by vB � i � tj ms�1.
Find the values of t when the two particles are
moving in the same direction.

19 Taking i and j as unit vectors due east and due
north respectively,

a) find, in the form ai � bj, the resultant of a
vector of magnitude 10 on a bearing of 060°
and a vector of magnitude 30 on a bearing 
of 210°.

b) Hence find the magnitude and direction of the
resultant.

19

How to make the Examiner happy
● Always underline all the vectors, especially all those i’s and j’s
● Draw a right-angled triangle diagram when resolving vectors into components. You don’t have to draw it to

scale, but if it is reasonably accurate, you can tell if your answers make reasonable sense
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In order to build up a model for motion and to develop some procedures to
analyse it, we will start with movement that takes place only in a straight
line. Some examples could be: dropping a ball vertically, driving a car on a
straight road or rolling a snooker ball along a flat surface.
Can you think of some more examples?

The first thing to do is to describe the motion precisely and perhaps draw a
suitable diagram. We will also be using graphs to record any changes in the
motion and to calculate additional information.

In this chapter you will learn:
● how to calculate average speed and average velocity,
● the meaning of acceleration, deceleration and retardation,
● how to interpret different types of graphs,
● how to use the gradient of a line on a graph,
● how to use the area under a section of a graph,
● how to use units to determine the relevance of the area or gradient.

Displacement, velocity and acceleration

Do you know the difference between ‘distance’ and ‘displacement’?
In Chapter 2 we learnt that a scalar quantity has magnitude (or size), but a
vector quantity has magnitude and direction.
Distance is a scalar, but displacement is a vector.

Putting it simply:
● distance means ‘how far’
● displacement means ‘how far and in what direction’.

There is a similar distinction between ‘speed’ and ‘velocity’.
Do you know which is which?
Speed is a scalar and velocity is a vector.
Speed is the magnitude of the velocity vector.

20

3 Motion in a Straight Line

Example 1
Describe the position of Reading relative to London.

Reading is approximately 60 km due west of London.
This is the displacement of Reading from London, as we know the direction.
We could also say that the distance to Reading from London is 60 km.

TAKE IN PHOTO P3.3
(map of towns in Berkshire and London)

TO BE SUPPLIED

TAKE IN PHOTO P3.1
snooker ball being hit

TO BE SUPPLIED

p. 8
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Putting it simply:
● speed means ‘how fast’
● velocity means ‘how fast and in what direction’.

Speed tells us the rate at which an object travels through a distance.

Rules or relationships that are true for velocity and displacement will
usually be true for speed and distance as well. To avoid repetition, this text
will most often refer to the vector forms rather than the scalar forms.

You probably already know the connection between distance, speed and
time. It can be summarised in the following triangle diagram:

By covering up the variable required, the relationship between the other
two is seen.

So, we have: D � S � T or S � �
D
T

� or T � �
D
S

�

These rules are true for constant speed. However, if it is changing we need
to consider the rate at which the speed is increasing or decreasing.
This is called the acceleration, and will have a positive value if the speed
is increasing or a negative value if the speed is decreasing.

Is acceleration a scalar or a vector?
In fact the same word is used in both cases, so we need to decide how to
interpret it from the context of a question.

When an object is ‘decelerating’ or ‘retarding’, this means its speed is
decreasing and therefore the acceleration is negative.
Deceleration and retardation are usually given as positive quantities.

D

S   �   T

21

Speed and velocity:

Speed is the rate of change of distance with respect to
time. (scalar)

Velocity is the rate of change of displacement with 
respect to time. (vector)

Acceleration and deceleration

Acceleration is the rate of change of velocity (or speed) with respect to
time.

Deceleration (or retardation) is the magnitude of a negative
acceleration.

Distance, Speed and Time
This triangle (below left) will be familiar
to you from Science or Physics. Look
out, however, for the letters or variables
that are used to stand for distance,
speed and time in Mechanics.
(See p. 32)
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Distance–time graphs

You will have met ‘travel graphs’ before.
How are the axes normally labelled?
They are usually graphs of distance plotted against time.
Time is always shown on the horizontal axis and the vertical axis is labelled
something like ‘distance from home’ or ‘distance from London’.

Graphs like these are also referred to as distance–time graphs.

Is there any other possible interpretation of the section of the graph
labelled CD, where the dog is sniffing the scent?
It is at a constant distance of 12 m from the owner, but could possibly be
moving in an arc of a circle rather than remaining stationary.
As this is only a graph of distance rather than displacement, we can’t tell,
as we don’t know if the direction from the dog to its owner is changing.

What mathematical assumption are we making by supposing that the
sloping lines on the graph are straight?
The speed of the dog would need to be constant for the line to be straight.
This is clearly a simplification of what might really have happened.
What do you think the section of the graph from O to A should really look
like?

Example 2
The graph below shows the distance of a dog from its owner after a stick is thrown for it to fetch.
First it runs to the stick, pauses briefly to pick up the stick and then returns to its owner.
Its return journey is interrupted when it decides to sniff an interesting scent on the grass.

a) How far did the dog run to pick up the stick?
b) How long did it delay during its return trip to sniff the scent?
c) Can we calculate the speed of its outward journey?

a) Section OA shows the outward journey. The dog runs 20 m.
b) The horizontal line CD shows where the dog stopped its return journey. This lasted 5 s.
c) Section OA shows a distance of 20 m travelled in 5 s.

speed � distance � time
� 20 � 5
� 4 m s�1

O

2

4

6

8

10

t (seconds)

m (metres)

12

14

16

18

20 A B

C D

E

1 2 3 4 5
time

di
st

an
ce

 fr
om

 o
w

ne
r

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TOWN 1 mile
 

1.6 km
HOME 5 miles

 
8 km
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Assuming that the dog was next to its owner at 0 s and had travelled 20 m
in 5 s, we can be sure that the end points O and A are in the right place.
However, the dog probably took a short time to achieve its maximum speed
and had to slow down to reach a halt again.
The real graph might have looked like this:

Now let us consider the gradient of the straight line segment OA.
On a co-ordinate graph the gradient is calculated like this:

gradient ��
c
c
h
h
a
a
n
n
g
g
e
e

i
i
n
n

x
y

�, sometimes written as m � �
�

�

x
y
�

If we include the units in the calculation, we get:

gradient OA � �
2
5
0

s
m
� �

4
�
m
s
� or 4 m s�1

This is the answer we had previously for the speed of the dog.
Notice how including the units in the division gives us the units for the
answer and therefore indicates how to interpret the outcome.

We should really be more precise in our description of the result of 4 m s�1

which we calculated earlier as the ‘speed of the dog’.
It would be more accurate to call this the average speed of the dog.
Comparing the straight line with the more realistic shape, we can see that
the dog must have exceeded this speed in the middle of its outward run.

O t

m

20 m

A

5s
time

di
st

an
ce

23

For distance–time graphs:

gradient � speed typical units: m s�1

Average velocity and average speed:

average velocity �

average speed �
change in distance
���

change in time

change in displacement
���

change in time
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Displacement–time graphs

When we are considering motion in a straight line, it is usually with respect
to a fixed point. Sometimes this is simply the starting point for the motion.
It is often referred to as an origin (which means beginning), in the same
way as the origin on a graph.

If an object can only move along a line, then there will be only two possible
choices of direction.
We need to specify which way along the line will be the positive direction.
The opposite way will then be the negative direction.

What effect will this have on a graph of displacement against time?
Whereas distance is always positive, displacement can be negative so the
vertical axis may need both positive and negative values.

Example 3
The graph below shows the displacement with respect to time of a 
lift moving in a vertical shaft between the basement level, ground 
floor and first and second floors.
Each level is 3 m apart.
Does the lift ascend at the same rate as it descends?

We can compare the lines representing any ascent with section BC, which is the only descent.
Let us consider OA and BC. We already know that the velocity is found from the gradient of a line.

A line that rises as you follow it across to the right has a positive gradient. The line BC has a negative gradient
because it comes down the page as you follow it in the direction of the horizontal t axis.
This corresponds to the direction in which the lift is travelling; from B to C it is descending.

Gradient of OA � �
3
5

m
s
� � 0.6 m s�1, Gradient of BC � � �0.75 m s�1

The signs of these velocities indicate their directions; 0.6 m s�1 upwards and 0.75 m s�1 downwards.
The speeds are simply the magnitudes: 0.6 m s�1 and 0.75 m s�1.
The descent speed is therefore greater than the ascent speed.

�6 m
�
�8 s

t (seconds)

s (metres)

5 10 15 20 25 30 35 40 45 50 55 60

3

6

�3

O

1st

2nd

B

A B

C D

E F

G H

G

TO BE
RESUPPLIED
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For vertical motion, ground level is often taken as being the ‘zero’ level.
In the case of the lift in Example 3, it makes sense for the basement level to
be ‘negative’ and the floors above to be ‘positive’.

Once again, the graph of the motion has been simplified to produce straight
lines. Can you imagine what a more precise graph might look like?
Think also about how the start and end of a journey in a lift actually feels.

Look again at the horizontal lines on the graph.
This time there is no doubt about what they represent; they show the times
when the lift was stationary. In the straight-line vertical motion of the lift
shaft there is no other possible way that the displacement from the ground
floor level can be constant.

In this example the units were divided in the same way as the numbers, to
confirm that the units for the answer would be correct for velocity.
In fact the calculation of the gradient on a displacement–time graph will
always involve dividing a displacement by a time and therefore give an
answer which will be a velocity.

We do not need to continue to do the units check for this particular type of
graph, but this method gives us a useful way of determining the meaning of
the result of any calculation involving standard units.
This process is called dimensional analysis. We will use it again in the
next section.

25

For displacement–time graphs:

gradient � velocity typical units: m s�1

TAKE IN PHOTO P3.8
Liff Picture

(outside building)
TO BE SUPPLIED

Practice
1 A cyclist leaves home at 10:00 am and cycles

1.6 km to the post office, arriving at 10:03 am. She
then spends 5 minutes there before cycling on to
the library. The library is a further 0.8 km and she
arrives at 10:10 am. After spending 20 minutes in
the library, she cycles directly home, reaching her
house at 10:38 am. Show all this information on a
distance–time graph and calculate the speed of the
cyclist on each of her three journeys.

2 Here is a displacement–time graph of the vertical
movement of a bucket on a rope being used to take
bricks up to the top of a building. Briefly describe
the motion and calculate the speed of the upwards
and the downwards journeys.

0

s (metres)

t (seconds)

12 m

48 78 98 110 158 188 208
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Velocity–time graphs

We have seen how to work out speed and velocity from distance–time
graphs and displacement–time graphs. It is also very common to show on a
graph how the velocity changes against time.
What new information can we deduce from this sort of graph?

How does a velocity–time graph differ from a speed–time graph?
As the velocity tells us ‘how fast and in which direction’, it is this sense of
the direction of the motion that makes the difference.
For any example where the object only moves in a forward direction, the
graph against time of the velocity will be the same as it would be for speed.

Example 4
Christopher is driving his radio-controlled model car up the corridor.
It accelerates from rest to its top speed of 2 m s�1 in 0.8 s.
After travelling for 1.4 s at this speed, it brakes and comes to rest in 0.5 s.

Assuming smooth acceleration and deceleration, and that the direction is 
always up the corridor so that we know all the velocities are positive, 
the velocity–time graph would look like this:

a) What do the gradients of the three line segments tell us about the motion?
b) What is the area under the graph and what does it mean?

a) For OA: gradient � �
2

s
m
� � �

0.
1
8 s
� � �

2
s
m
� � �

0.
1
8 s
� � 2.5 m s�2

Since AB is horizontal, its gradient is zero.

For BC: gradient � �
�2

s
m

� � �
0.

1
5 s
� � �

�2
s

m
� � �

0.
1
5 s
� � �4 m s�2

Once again, using the units in the calculation shows us that the gradient gives us the acceleration.
For the centre section, the velocity is constant, so the acceleration is zero.
The negative acceleration, or retardation, at the end shows that the car is slowing down.

b) The area under the graph is a trapezium. Area of a trapezium � ��a �

2
b

�� � h

Area under the graph � ��2.7 s �

2
1.4 s
�� �

2
�
m
s
� � 4.1 m

This is the distance travelled by the toy car. As we know, this is all in the same (positive) direction, so we can
say this is the total displacement of the car.

The speed of an object is the magnitude of its velocity and will therefore be positive.
As the velocity is always positive, the speed–time graph would look the same as the one above.

t

v

0.8 s

A B

C

2.2 s 2.7 s

2 m s�1

O

1.4 s

TAKE IN PHOTO P3.9
radio-controlled car
TO BE SUPPLIED
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How will the graph look different for a situation where the movement is not
always in the same direction? What if the object moves ‘backwards’?

The speed–time graph for the same example would look like this:

How does it differ from the velocity–time graph?
The main difference is that the direction of the velocity is ignored and only
its magnitude is plotted, which will always be positive (or zero).
In effect, the parts of the graph underneath the horizontal axis have been
reflected up, to appear above this axis.

t

v

10 s 13 s 16 s 20 s

1.4 m s�1

O
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For velocity–time graphs:

gradient � acceleration typical units: m s�2

area � displacement typical units: m

Where the displacement is always positive, this will be the same as the
distance travelled.

Example 5
During shunting manoeuvres in a siding, an engine is moving forwards at 1.4 m s�1 at t � 0 s.
The engine driver applies the brakes after t �10 s and, after coming to rest three seconds later, 
immediately accelerates in the opposite direction to reach a velocity of �1.4 m s�1 by t � 16 s.
This graph shows the velocity during the first 20 s of the motion of the engine.
Find the area of each of the shaded sections and explain what it means.

For the section for 0 to 13 seconds: area � ��10 �

2
13

�� � 1.4 � �16.1 m (displacement, forwards)

For the section for 13 to 20 seconds: area � ��4 �

2
7

�� � (�1.4) � �7.7 m (displacement, backwards)

(The area of a part of the graph below the t axis gives the distance travelled in the negative direction.)

The sum of these gives the total displacement: 16.1 � (�7.7) � 8.4 m (forwards).
(This is not the same as the total distance travelled: 16.1 � 7.7 � 23.8 m.)

t

v

10 s
13 s 16 s 20 s

1.4 m s�1

�1.4 m s�1

O
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Acceleration–time graphs

Now that we have seen graphs of distance, displacement and velocity
plotted against time, what can we learn from acceleration–time graphs?
In fact these are far less commonly used, particularly when considering
motion with constant acceleration.

What do you expect an acceleration–time graph to look like?
If the acceleration is constant, it will consist of horizontal straight lines.
When the speed is constant and the acceleration is zero, there will be a flat
line along the x axis.
When the object is accelerating, the line will be above the x axis.
When the object is decelerating, the line will be below the x axis.

Taking the first section of the graph, from t � 0 to t � 12 s, what does the
area under the graph tell us?

Carefully multiplying both the 
numbers and the units, as we 
did before, gives us:

area � 10 m s�2 � 12 s
� 120 m s�1

This is the speed reached by the 
sky-diver after the first 12 s.

Use this principle to find the negative area between the t axis and the
second section of the graph.
Use this to find the final speed of the sky-diver.
Did you get an answer of 12 m s�1?

Example 6
A sky-diver jumps out of a stationary hovering helicopter and free-falls for 12 s. His acceleration towards the
ground is 10 m s�2. He then releases his parachute and experiences a retardation of 6 m s�2.
After a further 18 s he reaches a constant speed.
Taking downwards as the positive direction for motion and assuming he falls in a vertical straight line, sketch a
graph of the acceleration of the sky-diver against time.

t

a

12 s 30 s

10 m s�2

�6 m s�2

O

For acceleration–time graphs:

area � change in speed typical units: m s�1

t

a

12 s

10 m s�2

O
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Summary
● Speed is the rate of change of distance with respect to time
● Velocity is the rate of change of displacement with respect to time
● Acceleration is the rate of change of velocity (or speed) with respect to time
● Deceleration (or retardation) is the magnitude of a negative acceleration

● Average velocity �

● Average speed �

● For distance–time graphs: gradient � speed
● For displacement–time graphs: gradient � velocity
● For velocity–time graphs: gradient � acceleration, area � displacement
● For acceleration–time graphs: area � change in speed

change in distance
���

change in time

change in displacement
���

change in time

End of Chapter Questions
1 Can you complete these sentences?

a) The horizontal axis usually represents …

b) Speed is the rate of change of … with respect to
time.

c) … is the rate of change of displacement with
respect to time.

d) The gradient on a velocity–time graph represents
the …

e) The area under a velocity–time graph represents
the …

f) The meaning of an area on a graph can be 
found by …

2 What does a horizontal line on a distance–time
graph usually mean?

3 A fish darts 11 metres in 1.7 seconds. What is its
speed?

4 A car travels a total distance of 100 miles in
2�

1
4� hours. Convert this information to SI units

and hence find the average speed of the car in
ms�1.

5 What can we tell from a horizontal line on a
velocity–time graph?

6 A police car accelerates from 0 to 20 ms�1 in
8 seconds. It then travels at this speed for
15 seconds. The brakes are applied and the vehicle
comes to rest after a further 5 seconds. Sketch a
speed–time graph and by finding the area
underneath the graph, calculate the total distance
the car has travelled.

7 A young girl climbs the steps up to the top of a
2.3 m high playground slide. This takes her
9 seconds. She waits at the top for 5 seconds and
then slides down to the bottom, arriving
18.5 seconds after the start of the climb. Show this
information on a displacement–time graph.
Calculate the velocity of her descent.

8 A boy kicks a football so as to hit a wall 10 m
away at a right angle. The ball travels to the wall
at a constant speed of 20 m s�1 and returns along
the same line at a speed of 12 m s�1. The boy
then traps the ball at a distance of 8 m from the
wall.
a) Draw a displacement–time graph for the motion

of the ball from when it was first kicked to when
it was trapped, measuring the displacement
from the point at which it was first kicked.

b) Find the average speed of the ball while it is in
motion.

c) Find the average velocity of the ball while it is
in motion.
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9 A car starts from rest at a set of traffic lights and
moves along a straight horizontal road with
constant acceleration 4 m s�2 until it reaches a
speed of 24 m s�1. It maintains this speed for
30 seconds before decelerating at 6 m s�2 until it
comes to rest at the next set of traffic lights.

a) Draw a speed–time graph to describe the
motion of the car.

b) Find the distance between the two sets of traffic
lights.

c) Find the average speed of the car for the whole
journey.

10 An athlete runs the 100 m along a straight
horizontal track in 10.5 seconds. She accelerates
uniformly from rest for 2 seconds to a top speed of
V m s�1 which she then maintains until she crosses
the finishing line. It then takes her 4 further
seconds to decelerate uniformly to rest.

a) Illustrate the athlete’s motion on a speed–time
graph.

b) Find, to 1 decimal place, the value of V.

c) Find, to 1 decimal place, the total distance
travelled by the athlete.

11 A body moving in a straight line accelerates from
rest for 8 seconds at a constant rate of 2 m s�2. It
then decelerates at a constant rate of 1 m s�2 for 14
seconds. It then travels at a constant speed for 5
seconds before decelerating uniformly to rest in a
further 6 seconds.

a) Show the motion of the body on a speed–time
graph.

b) Calculate the final deceleration of the body.

c) Calculate the total distance moved by the body.

How to make the Examiner happy
● For any form of travel graph, label the scale on both axes and state the quantity as well as the units, e.g.

“displacement (metres)”
● Don’t be caught out by the units for distance; we use ‘m’ as the shorthand for both miles and metres. Expect

it to be metres or kilometres unless the question makes it clear that it should be miles
● Each section of the graph will probably be a straight line. Make sure the endpoints of each section are in

exactly the right place
● If you do a gradient calculation, show on the graph the section you are using and label the horizontal and

vertical parts
● For any area calculation that involves more than one section, show the method clearly in stages, labelling the

sections on the graph
● Make sure you put the right units on your answers for gradient or area
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THIS CHAPTER IS ONE PAGE SHORT FOR DOUBLE PAGE SPREADS. 
PLEASE ADVISE.
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For certain situations we can assume that the acceleration involved is
constant. Can you think of some examples?
The best practical cases involve gravity, such as dropping an object or
jumping off a diving board. 
Sometimes we just assume that the acceleration is constant for a short
time.

There are a number of equations which we can use if we know that the
acceleration is constant. These are called the uniform acceleration
formulae. (‘Formulae’ is the plural of ‘formula’.)

In this chapter you will learn:
● how to substitute into formulae,
● how to rearrange formulae,
● how to convert units,
● how to select the most appropriate uniform acceleration formula to use,
● how to use vectors in uniform acceleration formulae.

Using formulae

What is the difference between ‘equations’ and ‘formulae’?
The answer is ‘very little!’.
An equation is a mathematical expression which includes an ‘equals’ sign.
A formula is usually an equation that gives a useful practical result.

This is a good time to practise substituting numbers into equations. There
are a few useful ‘tips’ to remember and some ‘pitfalls’ to avoid.

As this chapter is focused on the uniform acceleration formulae, we will
practise using these particular equations. You need to memorise them.
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4 The Uniform Acceleration Formulae

The uniform acceleration formulae (a.k.a. the SUVAT formulae):

v � u � at

s � ut � �
1
2�at2

s � vt � �
1
2�at2

v2 � u2 � 2as

s � �
1
2� (u � v)t

where: s � displacement (m, metres)
u � initial speed (m s�1, metres per second)
v � final speed (m s�1, metres per second)
a � acceleration (m s�2, metres per second squared)
t � time taken (s, seconds)

If the information is given in any other units, it must be changed into
these units first.

x 2 – 19�
4 +

x 4�

7 –� z 2 = y

Distance, Speed and Time Triangle
Although the relationships
summarised in this triangle
are still true, make sure
you learn the right letters 

to use in mechanics.
Distance � s (displacement)
Speed � u or v (initial/final speed or

velocity)
Time � t (time)

D

S   �   T
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Did you notice these three things?
● In algebra, two letters together means they are multiplied. In this case:

at � a � t.
● When we substitute into equations involving multiplication, this is often

shown using a dot rather than a ‘�’ sign.
● However, where decimals are concerned, brackets are sometimes

included to avoid any confusion. Otherwise 0.25 � 16 could look like
0.25.16 and be misread as 0 � 25 � 16.

In general we would be given the units for the starting quantities and we
should carefully put the correct units after the answer.
What would be the correct units for the answer v � 9?
It should be written as v � 9 m s�1.

What do you remember about ‘squaring’ and ‘square rooting’?
The two important tips when using these formulae are that:
● anything ‘squared’ will end up positive,
● the square root of a number can be positive or negative.

What does a starting speed of �4 m s�1 mean?
The negative sign implies ‘in the opposite direction’ or backwards.

In example 2, the two answers both involve a speed of 6 m s�1, but the two
possible solutions to the problem are 6 m s�1 forwards, or alternatively,
6 m s�1 backwards.
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Example 1
Substitute u � 5, a � 0.25 and t � 16 into v � u � at to find v.

Write out the formula and then rewrite it underneath with the actual numbers replacing the letters.
Then calculate the required answer.

v � u � at
v � 5 � (0.25).16
v � 5 � 4
v � 9

Example 2
Use the formula v2 � u2 � 2as to find a) v2 and b) v, when u � �4 m s�1, a � 2 m s�2 and s � 5 s.

a) v2 � u2 � 2as
v2 � (�4)2 � 2.2.5
v2 � 16 � 20
v2 � 36

(Notice the brackets used around –4 to make it quite clear that (�4)2 � (�4) � (�4) � 16.)

b) v2 �36
v � �36�
v � 6 m s�1 or �6 m s�1

According to the formula both of these answers are possible.
Depending on the context of the question, only one of them might be appropriate.

122

�2�
��x�

(�9)2

�(x � y)
�

2�
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Rearranging formulae

The two sides of an equation (i.e. either side of the ‘equals’ sign) must
always balance. So, the golden rule for rearranging equations is:
do the same to both sides.

How do you know what operation to do to both sides?
Look at the change you are trying to make and do the ‘inverse operation’,
i.e. the mathematical opposite, to both sides.

What does it mean if you are asked to ‘make r the subject of the equation’?
This means that the equation needs rearranging so that it reads: r � … 

Notice how it is correct style to line up the ‘equals’ sign down the page,
rather than to work from the left hand margin, as in ordinary writing.

Example 3
Rearrange the equation s � �

1
2�(u � v)t to make u the subject.

s � �
1
2�(u � v)t double both sides, the inverse of ‘halve’

2s � (u � v)t divide both sides by t

�
2
t
s
� � (u � v) only now can we safely drop the brackets

�
2
t
s
� � u � v subtract v from both sides

�
2
t
s
� � v � u finished, but not quite in the form u � …

� u � �
2
t
s
� � v

Example 4
Rearrange the equation v2 � u2 � 2as to make u the subject.

v2 � u2 � 2as subtract the term 2as from both sides

v2 � 2as � u2 take the square root of both sides

�v2 � 2�as� � u rewrite to make it clear that u is the subject

� u � �v2 � 2�as�
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Changing units

With the list of uniform acceleration formulae at the start of the chapter there
is a note of the normal units that must be used for these formulae to work.
If the measurements are given using any different units they must be
converted first.

In what units might the displacement, s, be given?
If SI units (Système International, the usual metric units) are used, they
could be metres, centimetres, millimetres or kilometres.
Imperial units used could be miles, yards, feet or inches.

In a given problem we may need to convert between different SI units.

For compound units, the conversion process will involve more than one step.

If we need to convert between Imperial and metric
units, special conversion factors are required.

How many centimetres are in one inch?
2.54 cm � 1 inch.

What is the connection between miles and kilometres?
5 miles � 8 kilometres or 1 mile � 1.6 km.

Do you know any other conversions? See if you can find some more.
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Remember: 1 kilometre � 1000 metres

1 metre � 100 centimetres

1 centimetre � 10 millimetres

1 metre � 1000 millimetres

Example 5
Convert a displacement of 16 cm into metres.

Using the relationship that 100 cm � 1 m, we see that we must divide by 100.

16 cm � 16 � 100 m
� 0.16 m

(Remember to change the units at the same moment as you do the mathematical conversion.)

Example 6
Convert 54 kilometres per hour into metres per second.

This will require two steps, converting the kilometres using 1 km � 1000 m and then converting the hours using
1 hour � 60 minutes � 60 � 60 seconds.

54 km.p.h. � 54 � 1000 metres per hour
� 54 000 metres per hour
� 54 000 � (60 � 60) metres per second
� 54 000 � 3600 m s�1

� 15 m s�1

0 1 2 3 4
cm

0
inches

1 2
HOME 1 mile1.6 km

TOWN 5 miles

8 km

Conversions
Only metric conversions need to be
learnt for the examination.
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Choosing the right formula

Have you wondered why there are five different SUVAT formulae?
Count how many variables appear in each one.
Now work out which variable is missing from each one.

Each one of the five formulae connects four of the variables.
The five formulae listed at the start of the chapter each exclude a different
one of the five SUVAT variables.

If we look at the information given in the question and which quantity is
required, we can choose the right formula to use by deciding which
quantity is not involved.

It always helps to list all the known information at the start of a question
and to make a note of the required quantity.
If the question is worded as a problem in context, pick out and list the
measurements that are given.

The uniform acceleration formulae (a.k.a. the SUVAT formulae):

This table shows with a cross which variable is missing from each equation:

Example 7
Which formula should be used to find u, if we know s, v and t?

Think of the ‘word’ SUVAT. The letter that isn’t mentioned in the question is a.

Looking at the table above, that means we need the equation: s � �
1
2�(u � v)t

Example 8
A car decelerates at a rate of 2 m s�2. 
What distance will it have covered after 8 s, 
if its speed is initially 30 m s�1?

First, list the quantities in the question:

a � �2 m s�2, t � 8 s, u � 30 m s�1, s � ?

As v does not appear in the question, we need to use: s � ut � �
1
2�at2

s � 30 � 8 � �
1
2� � (�2) � 82

s � 240 � 64
s � 176 m

p. 28

s u v a t

v � u � at � � � � �

s � ut � �
1
2�at2 � � � � �

s � vt � �
1
2�at2 � � � � �

v2 � u2 � 2as � � � � �

s � �
1
2�(u � v)t � � � � �
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Vector equations

We can use the uniform acceleration formulae in two or three dimensions
as well, by writing the different quantities as vectors.

There are three things to remember:
● underline the letters in the formulae representing vectors,
● t (time) is not a vector quantity,
● don’t use v2 � u2 � 2as.

What is the problem with using v2 � u2 � 2as?
It involves squaring and multiplying vectors. The other formulae only
require adding, subtracting or scalar multiples of vectors.

Use this same method in two or three dimensions.
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Example 9
A particle travelling with initial velocity (3i � 7j) m s�1 experiences an acceleration of (2i – j) m s�2.
What will be its new velocity after 15 seconds?    

List the quantities in the question, remembering to use proper vector notation.
(For handwritten solutions this means underlining all vector quantities.)

u � (3i � 7j) m s�1, a � (2i – j) m s�2, t � 15 s, v � ?

The equation linking these is: v � u � at

v � (3i � 7j) � (2i – j) � 15

v � 3i � 7j � 30i – 15j

v � 33i � 8j

The new velocity of the particle is: (33i � 8j) m s�1

Example 10

Find s if the initial velocity is � �m s�1 and, 12 seconds later, the new velocity is � �m s�1.

u � � �m s�1, v � � �m s�1, t � 12 s, s � ?

As the acceleration is not involved, use: s � �
1
2�(u � v)t 

s � �
1
2��� �� � �� � 12 

s � 6� �
s � � � m

66
48

�30

11
8

�5

4
�4

0

7
12

�5

4
�4

0

7
12

�5

4
�4

0

7
12

�5

v2 � u2 � 2as

Examination questions will normally be
set using unit vectors. If you choose to
use column vector notation in your
solution, make sure to give your final
answer in the same format as the
question.
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Two-step vector problems

How can we avoid having to use v2 � u2 � 2as to solve problems in two or
three dimensions?
We will have to use one of the other equations to find out first the one
quantity we don’t need, the time, t.
Then we can select another equation to obtain the required result.

Example 11
Find the initial velocity of a particle if, after accelerating at (2i � j) m s�2 over a total displacement of 
(120i � 320j) m, its final velocity is (26i � 26j) m s�1.

Summarising the question: a � (2i � j) m s�2, s � (120i � 320j) m, v � (26i � 26j) m s�1, u � ?

As we can’t find u directly, we must use s � vt � �
1
2�at2 to find t instead:

120i � 320j � (26i � 26j)t � �
1
2�(2i � j)t2

120i � 320j � 26ti � 26tj � t2i � �
1
2�t2j

Consider first the i components: 120 � 26t � t2

Rearranging this gives: t2 � 26t � 120 � 0
Factorising: (t – 20)(t – 6) � 0

t � 20 or t � 6 … but which value do we use?

Now consider the j components: 320 � 26t ��
1
2�t2

Doubling this gives: 640 � 52t � t2

Rearranging: t2 � 52t � 640 � 0
Factorising: (t – 32)(t – 20) � 0

t � 32 or t � 20

� The only value that will work for both the i and j components is t � 20 s.

The easiest equation to find u is: v � u � a t
26i � 26j � u � (2i � j) � 20
26i � 26j � u � 40i � 20j

�14i � 6j � u

� u � �14i � 6j

The initial velocity of the particle is: (�14i � 6j) m s�1

When finding the value of t from the information given, we chose the only
value that worked for both the i component and the j component.

Sometimes solving for t can give us a positive and a negative solution. In
such cases, we can usually ignore any negative values for t as we normally
assume the motion did not start until t � 0 s. So only positive values of t
apply to a given problem.

Examination Requirements
At present, this two-step method will
not be included in the examination.
Only problems that can be solved using
one equation directly will be set.
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Summary
● These equations must be memorised:

v � u � at

s � ut � �
1
2�at2

s � vt � �
1
2�at2

v2 � u2 � 2as

s � �
1
2� (u � v)t

● List the quantities in the question.
● Check all the information is given in SI units; convert the information if necessary.
● Find the letter missing from SUVAT to decide which equation to use.
● For two-dimensional or three-dimensional problems, use the formulae in vector form.
● Instead of using v2 � u2 � 2as in vector problems, first find t using another equation.

End of Chapter Questions
1 Can you complete these sentences?

a) To use these equations, the acceleration must
be …

b) Make sure all the information is given in …
units.

c) ‘Make t the subject of the equation’ means it
must be written as …

d) At the start, it is a good idea to … all the
information given.

e) When we use vectors, the one equation we can’t
use is …

f) It may be necessary to find … first, when using
vectors.

2 Using s � ut � �
1
2�at2 , find s when u � 12 m s�1, 

t � 30 s and a � 0.4 m s�2.

3 Find the two possible values of u, when v �
60 m s�1, s � 256 m and a � �2 m s�2. 

4 Make t the subject of the formula v � u � at.

5 Convert a speed of 24 kilometres per hour into
metres per second.

6 If you know the values of t, v and a, which formula
would you use to work out s?

7 A particle is initially at rest and after 40 seconds is
travelling at a speed of 60 m s�1. Calculate the
distance it has travelled.

8 A vehicle accelerates from 22 km.p.h. to
50 km.p.h. in a time of 10 seconds. Calculate the
acceleration of the vehicle.

9 Find the total displacement when a particle

accelerates at � � m s�2 for 5 s, given that its initial 

velocity is � � m s�1.

10 A particle has an initial velocity of 
(10i � 15j) m s�1 and a final velocity of 
(�10i � 45j) m s�1. If the total displacement of the
particle is 300j m, find its acceleration.

11 A particle moving in a straight line accelerates
uniformly from 3 m s�1 to 7 m s�1 in 12 seconds.
Find the distance travelled by the particle.

12 A car needs 1200 m of straight road to decelerate
uniformly from its maximum speed of 60 m s�1 to
rest. Find

a) the deceleration of the car,

b) how long it will take to stop.

13 A car is moving along a straight road at 54 km hr�1.
It then accelerates uniformly for 10 seconds up to
a speed of 72 km hr�1.

a) Express 54 km hr�1 in m s�1.

�12
17

3
4
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Find
b) the acceleration of the car in m s�2,
c) the distance travelled by the car as it accelerates.

14 A particle P, moving in a straight line, passes the
point O with velocity 7 m s�1. The particle then
moves with a constant deceleration of 4 m s�2 until
it returns to O. Given that at time T seconds P is
5 m from O,
a) show that T satisfies the equation 

2T2 � 7T � 5 � 0.
b) Hence, or otherwise, find the length of time for

which P is less than 5 m from O.

15 A car travels along a straight road with constant
acceleration. It passes a point P and 3 seconds later
passes a point Q where PQ � 24 m. After a further
2 seconds it passes a point R where QR � 26 m.
a) Find the acceleration of the car.
b) Find the speed when it passes P.

16 A train, starting from rest, accelerates for 90 s on a
straight track, covering a distance of 729 m. It then
maintains a constant speed for 600 s.
a) Find the acceleration of the train.
b) Find the total distance travelled by the train.

How to make the Examiner happy
● Make sure all the quantities are in SI units. If they are not, do the conversions before starting to use the

formulae.
● Justify using these equations with a phrase such as “Since the acceleration is constant, we can use …”.
● List the known quantities and show clearly which one is required, e.g. “v � ?”.
● Make sure you state the units with your answer.
● For vertical motion, state clearly which is the positive direction! If you choose upwards to be positive, then

the acceleration due to gravity will be �9.8 m s�2.
● For questions where gravity is involved, take the value on the front of the exam paper, unless the question

says otherwise. Don’t just use 9.8 m s�2 or 10 m s�2 without checking.
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THIS CHAPTER IS ONE PAGE SHORT FOR DOUBLE PAGE SPREADS. 
PLEASE ADVISE.
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We say that a person is ‘dynamic’ if they have energy and drive. They can
get things done or change things for the better.
In mechanics, the study of dynamics is all about the involvement of forces
in a situation and how they produce or change the motion of an object.

Sometimes the way forces combine will prevent there being any movement.
Do you remember what this branch of mechanics is called?
It is called statics.

We have now built up a number of techniques for modelling reality. In this
chapter these will be integrated with the application of forces, using the
mathematics of vectors to represent the forces.

The main contribution to our model will come from Sir Isaac Newton,
whose laws have established the basis for modern mechanics. It is even
known as ‘Newtonian Mechanics’ in his honour.
Do you know the story about Newton and the apple?

In this chapter you will learn:
● some of the different kinds of forces,
● more about resolving forces into perpendicular components,
● what forces resist motion,
● Newton’s Three Laws of Motion,
● how to apply Newton’s Laws to a variety of problems,
● how to use resolved components of forces for motion on a slope,
● how to model the movement of connected particles.

Forces

There are lots of different kinds of forces, so it is easiest to give a general
definition in terms of what they all do.

There will always be a direction associated with the action of any force.
What branch of algebra deals with quantities that have both direction and
magnitude?
You will remember that this is the defining quality of vectors.
We therefore use vectors to model forces, adding them or splitting them
into components according to the rules of vectors.

There are two main categories of forces:

contact forces and non-contact forces

Can you think of some examples of each of these kinds of forces?
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5 Dynamics

A force will have one of the following effects:
● a force can speed up or slow down a moving object
● a force can prevent an object from moving
● a force can change the direction of a moving object.

Isaac Newton is said to have ‘discovered’
gravity when an apple fell on his head!

p. 8

TO BE
RESUPPLIED
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Contact forces
If an object is pushed or pulled by hand, that is clearly an example of a
contact force.

Sometimes the pulling force is in contact with the object through a cable or
string. In this case the force is called tension.

If the force is pushing, a cable or wire would collapse. However, a solid
connection such as a tow-bar could deliver a pushing force. The force
would be called thrust in this case.

Any object that is in contact with another object or a surface is
experiencing the normal reaction force.
This is a contact force and will be at right angles to the surface in question.

Non-contact forces
There are also forces of attraction which do not require physical contact.
The most common of these which we all experience every day is due to
gravity. We sometimes call it ‘the force of gravity’.
Which direction does it act in?
Gravity acts towards the centre of the Earth. But for all every-day
problems, we simply consider it to act straight downwards.

‘Gravity’ (g) is the name for the acceleration of 9.8 m s�2 towards the
centre of the Earth. (Sometimes, to simplify the calculation, we take 
g � 10 m s�2.)

The force associated with gravity is weight. Although we all experience the
same acceleration, everyone’s weight is different, depending on his or her
mass.
The simple calculation is: weight = mass � g
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Gravity:

Acceleration due to gravity: g � 9.8 m s�2 (near the Earth’s surface)

Weight force: mg N (where m is the mass in kg)

The SI units of force are ‘newtons’ (N). The newton is a compound unit equivalent to kg m s�2.

Example 1
A crate of mass 15 kg is resting on a slope which is inclined at an angle of 30°
to the horizontal.
It is prevented from sliding because it is tied by a rope to a pole further up the
slope.
Show the forces involved on a sketch, showing the direction and nature of
each force.
Calculate the weight of the crate.

If we take g � 9.8 m s�2, the weight can be calculated to be 15 � 9.8 � 147 N.

P

g

T

T

W

R

car reversing

30°

R T

W

R � normal reaction force
T � tension in the rope

W � weight 

The value of g
Although some questions and
examples in this book take g � 10 m s�2

for ease of calculation, it should be
noted that in examination questions
g � 9.8 m s�2 will always be used.
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Resistance

In the Second World War, the French Resistance actively opposed the Nazi
occupation of their country.
In mechanics, resistance forces act to oppose motion.
These forces will be in the opposite direction to that in which an object is
moving, or is likely to move.

Friction
An object that is sliding along a surface is slowed down by the action of
friction. Surfaces that are rougher produce more friction.
(There will be more about friction in chapter 7.)

Air resistance
Any object moving through the air is likely to be affected by air
resistance. In practice, we will tend to ignore this effect for slow-moving
objects. However, the faster a vehicle travels, the greater the effect of air
resistance. How is this evident in the design of sports cars?
They tend to be sleeker and more streamlined, closer to the ground and
have ‘spoiler fins’ to use this force to help them ‘hug the ground’.

You may remember that we can ignore air resistance for a certain type of
model. Which one was that?
Air resistance depends on both speed and surface area, so we ignore it for a
particle model, which is assumed to have no surface area.

A resistive medium
Imagine a peanut is dropped into a pint of beer. It will fall to the bottom
more slowly than if the glass was empty. There is an upward resistance
force acting to reduce the downward speed.

What is the connection between this situation and air resistance?
An object moving through air is experiencing exactly the same sort of
force, except that the molecules in the air are less densely packed.

Example 2
A schoolboy is hauling his lunchbox up the playground slide using a piece of string.
Assuming the slide is straight and inclined at 40° to the ground, show on a sketch all the following forces,
considering their directions carefully: tension, weight, reaction, friction.

Friction is acting down the slide because the lunchbox is moving upwards.

40°

RT

F

W
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Newton’s First Law

Newton was a man of rare insight. He lived in the 17th century, when
anyone could tell you that to keep an object moving, you had to keep
pushing! Even if it was sliding downhill it would still stop at the bottom!
Newton, however, was able to recognise all the resistive forces at work and
state that without these an object should keep moving indefinitely.

These days we are familiar with seeing film from inside a space capsule or
perhaps from the international space station. What happens when an object
is passed from one astronaut to another?
It moves in a straight line at a constant speed.
Newton managed to come up with this law without seeing footage like this!

If the forces acting on a body ‘balance out’ then it will not experience any
acceleration. It will remain stationary or, if it was already moving, will carry
on at the same constant speed. Either way the acceleration is zero.

In order to apply this as a method we simply need to show that the total of
the forces acting equals zero overall.
One way is to split all the forces into components in two perpendicular
directions. These will often be horizontal and vertical. We can then show by
adding or equating that the total resultant force in each direction is zero. If
the forces balance in both directions, the overall resultant force acting must
also be zero.

45

Sir Isaac Newton (1642–1727), English
physicist and mathematician

Newton’s First Law:

A body will continue to remain at rest or move at constant speed
in a straight line unless an external force makes it act otherwise.

For constant speed (or to remain stationary):

The resultant force acting on a body will be zero.

Example 3
For the body shown below, state which forces must be equal in size for the body to continue to travel at a
constant speed of 2 m s�1 in the direction indicated.

Since there is no acceleration, the total force in any direction is zero.

Horizontally (H): P � F

Vertically (V): R � W

(The letters H and V are often used instead of the words ‘horizontally’ and ‘vertically’ in written solutions to
mechanics problems.)

W

R

PF

TAKE IN PHOTO P5.4
object floating between

astronauts
TO BE SUPPLIED
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Resolving forces on an inclined plane
Where the majority of the forces acting are either parallel or perpendicular
to an inclined plane (slope), it is easiest to resolve any other forces into
components in these directions.
If the object is moving along a slope we must definitely do this.

Look back at example 1. We calculated the weight, but not the other two
forces acting. We will find them using this method.

Forces in unit vector form
If the force is expressed in unit vector form, it is already in perpendicular
components and we must show the total vector is 0 or 0i � 0j.

Example 4
Here is the diagram of the three forces acting in example 1. The crate is stationary.
By resolving the weight into two components parallel and perpendicular to the slope, work out the magnitude of
the reaction and the tension forces. Take g � 9.8 m s�2.

We previously calculated the weight of the 
crate to be 147 N.

We can use sine and cosine to find the 
components of the weight.
As the crate is stationary, the resultant 
force in any direction must be zero.

Perpendicular to the plane (     ): R � 147 cos 30°
� 127.3 N

Parallel to the plane ( ): T � 147 sin 30°
� 73.5 N

It makes best sense to choose to resolve the weight into components parallel and perpendicular to the slope,
because the other two forces are in these directions already.
If we chose horizontal and vertical components, we would have to resolve both of the other forces.

Example 5
Two forces act on a particle which is moving with constant speed.
If one force, F1, is (5i � 3j) N, what is the other force, F2? Show your solution on a sketch.

The two forces must add up to the zero vector: F1 � F2 � 0

Making the total force in each direction zero: (5i � 3j) � F2 � 0i � 0j.
We can see that F2 � (�5i � 3j) N, since: (5i � 3j) � (�5i � 3j) � 0i � 0j.

Sketching this: or in components:

Either way, we can see that the resultant force acting is zero.

30°

30°

147 N 147 sin 30°

147 cos 30°

R T

F2

F1

3j

5i

�3j

�5i
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Practice
Throughout this exercise, take g � 9.8 ms�2.

1 What is the weight of a car of mass 950 kg?

2 What is the weight of a small ball of mass 88 g?

3 For which of these three objects should we not
ignore air resistance: a bullet on its path to the
target, a tennis ball in flight, a shuttle cock in
flight.

4 Draw a force diagram for each of these situations,
labelling the forces clearly;

a) A woman pushing a loaded shopping trolley at a
constant speed

b) A man pushing a cart up a slight incline.

5 The object in the diagram remains at rest under the
action of the forces shown. Write equations to
show how the forces must balance.

6 A barrel of mass 37.5 kg is resting on a plane
inclined at 19° to the horizontal. Express the
weight in components as shown.

7 Taking the unit vectors to be acting in the directions
shown in the diagram, express the weight of the
box in vector form in terms of m.

8 A crate of mass 40 kg lies at rest on a plane
inclined at 30° to the horizontal direction. Calculate
the magnitude of the forces R and T as shown on
the diagram.

30°

T

R

40 kg

27°

5 m

j i

b

a

37.5 kg

19°

F

Q

W

PR

S

T
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Newton’s Second Law

We all know from experience that a greater force is needed to start a full
supermarket trolley moving than was required when it was empty.
What is the connection between force and acceleration?

Newton’s observations on this subject led to the following rule, which can
also be expressed in a very clear equation form.

Do you remember the symbol that is used for proportionality?
We can use it to express the relationship between F, the resultant force,
and a, the acceleration.

We would write: F � a

This means: F � ka, where k is the constant of
proportionality

If we use SI units: F � ma

This could be rearranged as follows: �
m
F

� � a

This makes sense of our previous observations, as a constant force applied
to two different masses will produce different accelerations.
The same force divided by a bigger mass will result in a smaller
acceleration.

In this vector equation, F stands for the resultant force acting in the same
direction as the acceleration, a. 

How can we tell from the equation that F and a are in the same direction?
Do you remember what we discovered in chapter 2 about parallel vectors?
We saw that a scalar multiple of a vector will be parallel to the original
vector and the scalar will show how much bigger the length will be.
In Newton’s Second Law, m is a positive multiple, so F and a must be
parallel and in the same direction.

The general method will be:
● resolve all the forces into components parallel and perpendicular to the

direction in which motion is likely to take place,
● in the direction of motion, apply F � ma,
● equate the components in the other direction.

Newton’s Second Law:

A resultant force acting on a body produces an acceleration
which is proportional to the resultant force.

Newton’s Second Law (in equation form):

In SI units: F � ma

p. 16
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The principle also applies to motion taking place on an inclined plane.
The forces perpendicular to the plane must balance.
Parallel to the plane we can use F � ma.
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Example 6
An object with a mass of 25 kg is pulled along a flat horizontal surface by a taut horizontal cable with a tension of
30 N, against resistance forces totalling 18 N. (Take g � 10 m s�2.)
a) Find the overall force acting i) vertically, and ii) horizontally.
b) Hence find the acceleration of the object, and state its direction.

First, draw a sketch of the situation
showing all known quantities.
a) Consider the forces acting in each direction.

V: since there is no movement in a vertical 
direction, the vertical forces must be equal.
R � 25g N
R � 25 � 10
R � 250 N

H: the tension in the cable is greater than the resistance forces.
The resultant force will be: 
30 � 18 � 12 N (to the right)

b) H: Using F � ma (we can use just the magnitudes as the direction has been identified)
12 � 25 � a

12 � 25 � a
a � 0.48 m s�2

� The object will accelerate at a rate of 0.48 m s�2, in the same direction as the tension in the cable.

Example 7
A car of mass 1 tonne is travelling up a slope angled at 15° to the horizontal.
It is accelerating at 2.2 m s�2. Taking the value of g to be 9.8 m s�2, 
find the forward force produced by the engine if the resistance forces are a constant 1000 N.

Once again, sketch the situation.
The weight force needs to be resolved
into components parallel and perpendicular
to the plane of the slope.
(NB: 1 tonne � 1000 kg)

to the plane: R � 1000g cos 15°
R � 1000 � 9.8 � cos 15°
R � 9470 N (3 s.f.)

to the plane: Using F � ma, where F is the magnitude 
of the resultant force
P � 1000g sin 15° � 1000 � 1000a

P � 1000 � 2.2 � 1000g sin 15° � 1000
P � 2200 � 2540 � 1000
P � 5740 N (3 s.f.)

� The engine will produce a force of 5740 N

a

25g N

R

T � 30 N18 N

(resistance
forces)

15°

R

P

15°

1000g cos 15°

1000g sin 15°
1000g N

1000 N

a � 2.2 ms�2
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Newton’s Third Law

When a force is applied, it provokes a response in the form of an equal
force in the opposite direction.
Place this book in the middle of a table. The weight of the book is acting on
the table. What is the opposite force?
It is the Normal Reaction force acting upwards on the book.
This force is stopping the book from moving downwards under the
influence of gravity. It is one example of Newton’s Third Law.

A simple way of applying this to modelling problems is to remember that:
‘forces usually come in equal and opposite pairs’.
When we draw a force diagram, we need to add forces in equal and
opposite pairs, as appropriate.

In practice we tend to focus on the forces that are acting on one object in
particular, but it is still good practice to show how the pairs of forces act.

p. 37

Newton’s Third Law

For every action there is an equal and opposite reaction.

Example 8
For each of the situations outlined below, describe the equal and opposite forces acting.

a) A tow bar connects an accelerating car to a trailer.

b) A pillar at the end of a wall consists of a concrete sphere on top of a concrete column.

c) A child actor stands on a stool which is placed on a rostrum.

Reaction from stool acts on child.
Weight of child acts on stool.
Other forces acting include thrust from stool legs on rostrum and upwards
force from rostrum on stool.

T

T T
T

T

T
W

R

Thrust acts upwards on sphere, weight acts downwards on
column.

T

W

Tension (stretching tow bar) pulling car back, pulling trailer forward.

TT

a
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Practice
Throughout this exercise take g � 10 ms�2.

1 A man sits on a chair. Will the force in the chair
legs be tension or thrust?

2 Find the acceleration of a particle of mass 0.05 kg,
if acted upon by a force of 52 N.

3 What force will cause an object of mass 125 kg to
accelerate at 0.4 ms�2?

4 A body is acted upon by forces as shown in the
diagram below.
What will be its acceleration parallel to the plane?

5 A child on a sledge is being pulled along by a
horizontal rope, against resistance forces of 180 N.
The combined mass of the child and sled is 62 kg.
Show all this information on a sketch.

a) If the sledge moves at a steady speed, state the
magnitude of the tension in the rope.

b) If the sledge accelerates at 0.25 ms�2, find the
new tension in the rope.

6 A boy on rollerskates is holding a javelin. How
will Newton’s Third Law apply to this situation
if he tries to throw the javelin. How could he
succeed in throwing the javelin without moving
himself?

7 If the car of mass 1 tonne shown in the diagram
is producing a tractive force of 6400 N, find the
value of the normal reaction force acting from the
plane on the car and calculate the acceleration of
the car.

36°

R

a

150 N

6400 N

T

a

R

T � 500 N

17°

17°
90g N

30 N
90 kg
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Connected particles

What will be the main feature of the motion of two particles that are
connected by a string?
Providing the string (we use this word to mean any kind of cable or rope)
remains taut, both particles will move the same distance, they will travel at
the same speed and have the same acceleration.

Why will they not necessarily have the same velocity?
Depending on the situation, they may not both move in the same direction,
even though they will have the same speed.

The main fact that will make the mathematical solution possible is that the
tension in the string affecting both will have the same magnitude.
This is an example of Newton’s Third Law in action.

Since we are considering the forces acting on both particles, we will have to
use an equation that links forces and acceleration. Which is that?
It will be Newton’s Second Law in the form: F � ma.

The standard method we will use is:
● draw a force diagram showing all relevant forces,
● label the acceleration on each of the connected particles,
● write an equation of motion for each particle, using F � ma,
● add the equations (to eliminate the tension) and find the acceleration,
● if required, substitute back into either equation to find the tension.

Example 9
Two particles, of masses 6 kg and 8 kg, are connected by a light, inelastic string passing 
over a smooth fixed peg. Find the acceleration of the system when it is released from 
rest and the tension in the string. (Let g � 9.8 m s�2.)

First, we draw the force diagram.

A peg, like a pulley, is a support from which the system is suspended. 
The size of the tension in the string is the same at either end, and acts to 
pull the ends of the string towards the centre.
Both particles have the same acceleration.

We use F � ma, where F is the resultant force acting in 
the direction of the acceleration.

For the 8 kg mass: 8g � T � 8a ………………(1)

For the 6 kg mass: T � 6g � 6a ………………(2)

Adding (1) � (2): 8g � T � T � 6g � 8a � 6a
2g � 14a

�
1
2
4
g
� � a

� a � 1.4 m s�2

Equation (2) ⇒ T � 6a � 6g
T � 6 � 1.4 � 6 � 9.8

� T � 67.2 N

v

v

T

T

8g N
6g N

8 kg

aa

6 kg

v

v
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In example 9, it was obvious which way the system would move, once
released; the heavier side would accelerate downwards.

What if it’s impossible to tell just by looking?
Label the acceleration in the most likely direction and use the same
method.
If the direction was wrong, the acceleration will come out negative.
You will then know that the system moves with this acceleration in the
opposite direction.

Notice that we only consider the forces acting on one particle at a time.
The connection comes when we add the equations of motion, not when we
write them.

We only use F � ma for forces parallel to the direction of the direction of
motion.
Any forces perpendicular to the motion must balance out.

What if the particles are connected by a rod that is in thrust, rather than in
tension? What would be an example of that?
A good example would be the tow-bar between a car and a trailer.
For tension, the forces act towards the centre, pulling the ends in.
For thrust, the forces act away from the centre, pushing the ends out.
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Example 10
A solid block, of mass 2m kg, is resting on a horizontal table. It is connected by a light, inelastic string passing
over a smooth fixed pulley to a second block of mass m kg. When the system is released from rest the block on
the table experiences a frictional force of 4m N.

a) Find the magnitude of the normal contact force acting on the block on the table.
b) Find the acceleration of the system when it is released from rest, and the tension in the string.

(Let g � 10 m s�2.)

Again, we draw the force diagram
showing the tension in the string and the
same acceleration for each block:

a) The vertical forces on the block on the table
must balance, therefore: R � 2mg N

b) We use F � ma:

For the hanging mass: mg � T � ma ………………(1)

For the mass on the table: T � 4m � 2ma ………………(2)

Adding (1) � (2): mg � T � T � 4m � ma � 2ma
10m � 4m � 3ma

6m � 3ma
6 � 3a
2 � a

� a � 2 m s�2

Equation (2) ⇒ T � 2ma � 4m
T � 2m � 2 � 4m

� T � 8m N

T T Tension

T T Thrust

R

T

T

4m N

a

a

2mg N

mg N

2m kg

m kg
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Maths in Action: A Comfortable Ride

One of the biggest changes in city architecture in recent years is
that buildings have been getting dramatically taller. Skyscrapers
with over 50 storeys are now commonplace, and a few now even
reach to over 100 floors.

However, there are mathematical reasons why it is unlikely that
many buildings will ever be much higher than this. One of the
most important constraints on the height of a building comes
from a factor you might not have predicted: the acceleration of
the elevators.

A 100-floor skyscraper is of no use unless it is possible for people
to conveniently and safely travel between the top and the ground.
To deal with the large people movements in a skyscraper, the
elevators need to travel quickly. It is no problem in theory for an
elevator to travel at high speeds, such as 50 miles per hour or
more. This would be no more uncomfortable than travelling in a
car at that speed. Unfortunately, in order to get to those high
speeds, the elevator needs to accelerate, and that is where the
problems begin.

You have probably experienced the sensation of your stomach lurching towards your throat as a lift plunged
downwards. This sensation is caused by the lift’s acceleration, which creates a sense of partial weightlessness.
If the lift was allowed to drop in free-fall, you would experience complete weightlessness, and could float
around the lift capsule. Joyriders would find this exciting, but for everyone else it would lead to nausea. In
fact, to ensure passengers will be comfortable (and won’t for example smear lipstick if they try to apply it
while in motion!), lift designers normally restrict the acceleration upwards or downwards to 10% of
gravitational acceleration, g, or about 1 ms�2.

A lift that spends its entire journey accelerating and then decelerating at this maximum level of 1 ms�2 has this
graph.

So how fast might the elevator travel, and how long will it take to climb to the top of a 100 storey building? If
we assume the distance between floors is 4 metres making the building 400 metres high, we can work out the
time from the standard formula: s � ut � �

1
2�at2.

For the first half of the journey, initial speed is zero and the elevator accelerates at 1 ms�2:

200 � 0 � 0.5 � 1 � t2, so t � �400 � 20 seconds.

This halfway level is the point where the elevator reaches maximum speed.

We can work out the peak elevator speed using the formula:

v � u � at

u (initial speed) is zero, so:

Peak speed � 0 � (1 � 20) � 20 ms�1.

time0

54

PICTURE TO BE INSERTED
TO BE SUPPLIED
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The second half of the journey is a mirror image of the first half, and will also take 20 seconds, making the
total journey to the top 40 seconds.

The graph of the elevator’s speed will look like this.

And its height plotted against time will look like this:

By these crude calculations it will take a lift almost a minute and a half to do a return journey from the ground
to the top floor in a 100 storey skyscraper, and that is ignoring loading times and assuming it doesn’t have to
stop to drop off passengers on the way.

A single lift might be able to carry 50 people at most. At peak times of the morning, there will be hundreds of
people arriving at the building every minute and to prevent queues building there must be enough lifts to ferry
them all. But the more lift shafts there are, the less space there is for desks and people. There comes a stage
where in order to handle the vast numbers of people moving up and down a tall building, the entire floor space
needs to be taken up by lift shafts!

This great elevator conundrum explains why skyscrapers of 200 floors or more are unlikely to be viable in the
years to come.

20 seconds 40 seconds

400 m

0

20 seconds 40 seconds

Speed
of

elevator
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End of Chapter Questions
1 Can you complete these sentences?

a) Gravity acts towards …
b) The force produced when an object touches a

surface is …
c) The weight of an object is its … multiplied by

…
d) Resistance forces act to oppose …
e) For motion in a straight line at constant speed,

the forces must …
f) The simple equation for Newton’s Second Law

is …
g) For motion on a slope we use F � ma … to the

slope.
h) A simple statement for Newton’s Third Law is

‘Forces come in …’.

2 What is the weight of a beetle of mass 5.1 g?
(Take g � 10 ms�2.)

3 A body of mass 54 kg lies on a plane inclined at 39°
to the horizontal. Express the weight of the body in
the form ai � bj, where i acts parallel and down
the plane and j is perpendicular to the plane.
(Take g � 9.8 ms�2.)

4 If each of the bodies shown is travelling with
constant speed, find each of the unknown forces.

5 Find the acceleration up the plane of the body in
the diagram. (Take g � 9.8 ms�2.)

6 At time t � 0, a force of magnitude 12 N is applied
to a particle of mass 6 kg which is at rest.
a) Find the acceleration of the particle.
b) Find the speed of the particle when t � 3.

7 A particle of mass 400 g is moving along a straight
line at 12 m s�1. The speed of the particle is
reduced to 4 m s�1 by the action of a constant
resultant force of magnitude 8 N. Find the length of
time for which the force acts on the particle.

8 Each diagram shows the forces acting on a particle
of mass 5 kg. Find, to 3 s.f. where appropriate, the
acceleration of the particle.
a) b)

c)

9 A resultant force (6i � 12j) N acts on a body of
mass 3 kg.
a) Find the acceleration of the particle in the form

ai � bj.
b) Find the magnitude of the acceleration.

T � 2550 N

25°

300 kg

c

T

R

305 N

94 N
16 N

Q
85 N

b R

30 N

400 N

80 N

R

50 N

20 N

P

a

Summary
● Acceleration due to gravity: g � 9.8 ms�2 (near the Earth’s surface)

● Weight force: mg N (where m is the mass in kg)

● Newton’s First Law A body will continue to remain at rest or move at constant speed
in a straight line unless an external force makes it act otherwise.

● Newton’s Second Law A resultant force acting on a body produces an acceleration
which is proportional to the resultant force.

● Newton’s Second Law (in equation form) F � ma.

● Newton’s Third Law For every action there is an equal and opposite reaction.

9 N

12 N

4 N

6 N
110°

15 N

8 N
60°
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10 A particle of mass 6 kg is moving with an initial
velocity of (2i � j) m s�1. It is then acted upon by a
resultant force (18i � 12j) N.

a) Find the acceleration of the particle.

b) Find the speed of the particle after 4 seconds.

11 A particle of mass 200 g is acted upon by forces
(ai � 3j) N, (�i � 17j) N and (12i � bj) N. Given
that the particle accelerates at 2.5 m s�2 in the
direction of the vector (3i � 4j), find the values of
a and b.

12 A suitcase of mass 10 kg is pulled along a smooth
horizontal surface by a horizontal rope. The
suitcase accelerates at 0.2 m s�2. Find the tension
in the rope.

13 A box of mass 20 kg is dragged along a rough
horizontal plane at constant speed by a force of
magnitude 60 N which is inclined at an angle of 60°
to the horizontal. Find the friction force acting on
the box.

14 A particle of mass 0.25 kg is placed on a smooth
plane inclined at an angle of 30° to the horizontal
and released from rest. Find its acceleration.

15 Particle P of mass 3 kg is suspended by a
light inextensible string. Particle Q of
mass 2 kg is attached to P by means of a
second light inextensible string. A force
of magnitude F is applied vertically
upwards to the upper string and causes
the particles to accelerate upwards at
2.2 m s�2. Find

a) the magnitude of F,

b) the tension in the string which joins the two
particles.

16 A lorry of mass 1200 kg tows a trailer of mass
800 kg by means of a light tow-bar along a straight
horizontal road. The lorry’s engine produces a
driving force of magnitude 10 000 N and the lorry
and the trailer experience resistance forces of
magnitude 2400 N and 1600 N respectively.

a) Find the acceleration of the system.

b) Find the tension in the tow-bar between the
lorry and the trailer.

The lorry then switches off its engine. Given that
the resistance forces remain unchanged, find

c) the deceleration of the system,

d) the force in the tow-bar.
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How to make the Examiner happy
● Draw a BIG, clear force diagram and show on it ALL the information from the question. Before solving the

problem, read the question through to make sure you have it all written down correctly.
● Indicate the angle for any inclined forces.
● Use the distinctive arrow-head notation in this text book to differentiate the various mechanical quantities on

your diagram.
● Make it clear whether you are using Newton’s Second Law in scalar form or vector form.
● Where appropriate give answers in exact form (i.e. including surds or g) before calculating a numerical

value. Use these exact forms in subsequent calculations, or make efficient use of your calculator’s memory
functions.

● Give numerical answers to 3 s.f. and angles to 1 d.p. unless there is a good reason to do otherwise (i.e. the
question says so!).

F

Q

P
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Have you met the word ‘momentum’ in connection with a moving object?
We sometimes say that it is difficult to stop a moving object because of its
momentum. Can an object at rest have ‘momentum’?

How can we measure the momentum of an object or vehicle?

We also talk about ‘acting on impulse’ when we mean doing something
suddenly, on the spur of the moment.
The word ‘impulse’ also has a specific meaning in mechanics.

In this chapter you will learn:
● how mathematicians define the terms ‘momentum’ and ‘impulse’,
● how to calculate the momentum of a moving body,
● how to use the relationship between impulse and momentum,
● why momentum is conserved in collisions,
● what happens when particles ‘coalesce’,
● how to apply the Principle of Conservation of Linear Momentum.

Momentum

If momentum is a property of moving objects, what factors affect its ‘size’
or magnitude? What gives one object more momentum than another?

We can begin to answer this question by taking the commonsense view that
‘momentum is what makes an object keep moving’.
Think about two balls rolling towards you, both at the same speed; one is a
football and the other is a bowling ball.
Which is harder to stop?
Instinct tells us that the heavy bowling ball will be more difficult to stop.
Greater mass means more momentum if the speed is the same.

Now imagine catching a ping-pong ball.
Will it be harder to stop when it is thrown gently to you, or when it is hit at
top speed towards you, straight from the bat?
The faster-moving ball would have greater momentum, although the masses
are identical.

In fact, the only two factors that matter are mass and velocity.

The units of momentum will be [mass] � [velocity] � kg m s�1.
Remember the units of force are Newtons, and N � kg m s�2.
These units are very much like the ones we require, in fact:

N � s � kg m s�2 � s
� kg m s�1.

The units of momentum are therefore N s, ‘newton seconds’.
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6 Momentum and Impulse

The definition of momentum:

momentum � mass � velocity

or momentum � mv

TAKE IN PHOTO P6.1
table tennis ball being hit

hard
TO BE SUPPLIED
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We need to make sure we use SI units for all calculations.
If any information is given in different units, first of all we need to convert it
to SI units.

Do you remember the difference between vector and scalar quantities?
Which kind is momentum?
Scalars have only a magnitude, while vectors have both size and direction.

If the velocity is given as a vector, we use the definition:

momentum � mv
(A bold letter for velocity shows it is a vector.)

We know that multiples of a vector are parallel to each other. It therefore
follows that the momentum will be in the same direction as the velocity.

If the object is moving in only one dimension (along a straight line) then a
plus or minus sign will be enough to indicate which way it is moving.
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Example 1
A man of mass 80 kg is walking at 2.5 m s�1. What is his momentum?

Momentum � mv
� 80 � 2.5
� 200 N s

Momentum is a vector quantity:

Its direction is the same as the direction in which the body is moving.

Example 2
What is the momentum of a car of mass 0.81 tonnes, travelling at 30 m.p.h.?

0.81 tonnes � 0.81 � 1000 kg
� 810 kg

30 miles per hour � 30 � 1.6 km per hour
� 48 km per hour
� 48 000 metres per hour

� �
6
4
0
8

�

00
6
0
0

� metres per second

� �
4
3
0
� m s�1

� Momentum � mv

� 810 � �
4
3
0
�

� 10 800 N s

Example 3
A particle of mass 0.75 kg is travelling with velocity (�16i � 28j) m s�1. Find its momentum.

Momentum � mv

� 0.75 � (�16i � 28j)
� 0.75 � (�16)i � 0.75 � 28j

� (�12i � 21j) N s

30 m.p.h

p. 8
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Impulse

In tennis, the direction and speed of the ball is changed by a very brief
contact with the racket. The same is generally true of all ball sports.

The effect of a force applied for a very short time, like this, is called an
impulse.

We make the assumption that the magnitude of the force acting is constant,
which seems reasonable as it acts for such a short time.

What are the units of impulse?
Think about the quantities involved and work it out for yourself.

The units of impulse must be [force] � [time] � N s.
These are the same as the units of momentum.

In practical terms, which of the quantities impulse, force and time is it
hardest to measure?
It is difficult to measure the very short time of application of the force.

How could you find out how long a tennis ball is in contact with the racket?
Perhaps it could be found from slow-motion film footage.
It could be easily calculated if we knew the force and the impulse.

The definition of impulse:

impulse � force � time

or J � Ft (J is used for the magnitude of an impulse)

or J � Ft (if F is given as a vector, J will be a vector)

When impulse is a vector, its direction is the same as the force 
involved.

Example 4
What is the magnitude of the impulse produced by a constant force of 2000 N acting for 0.0037 s?

Impulse � F � t
� 2000 � 0.0037
� 7.4 N s

Example 5
A particle receives an impulse of magnitude 11.6 N s as a result of a constant force of 250 N acting for a time
t seconds. Find the value of t.

Since J � Ft
11.6 � 250t

�
1
2
1
5
.
0
6

� � t

� t � 0.0464 s
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On the other hand, how do we measure impulse?
If their units are the same, what is the connection between impulse and
momentum?

Remember first, that F � ma.
If the force is assumed to be constant, then the acceleration is also constant
and we can use: v � u � at
Rewrite this to make a the subject of the formula:

v – u � at

�
v –

t
u

� � a

Now, since impulse � F � t
� ma � t (replacing F with ma)

� m�
v �

t
u

� � t �replacing a with �
v �

t
u

��
� m (v – u)

impulse � mv – mu

If u and v represent initial and final velocity, what does this equation mean?
We can call mv the final momentum and mu the initial momentum.

Therefore the impulse can be calculated from the initial momentum and the
final momentum. These are relatively easy to measure as they depend only
on mass and speed.

What assumptions or simplifications have been made here?
● The ball has been treated as a particle.
● All the motion happens in a straight line.
● The effects of air resistance, friction and rolling have been ignored.
In particular, only the speeds just before and just after the impulse are
used. The ball may have been slowing down to reach the initial speed of
0.8 m s�1, and will slow down again from its new speed of 1.4 m s�1.
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The impulse–momentum principle:

impulse � change in momentum

or impulse � final momentum – initial momentum

or J � mv � mu

Example 6
A tennis ball of mass 50 g is rolling along the ground at 0.8 m s�1, when it is tapped from behind by a racket
moving in the same direction. Immediately afterwards its speed is 1.4 m s�1.
What was the magnitude of the impulse applied to the tennis ball?

First, note that the mass of the ball in SI units is 0.05 kg.

Since J � mv – mu
J � 0.05 � 1.4 � 0.05 � 0.8

� 0.07 � 0.04
� 0.03 N s
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Conservation of linear momentum

Have you ever played with one of the ‘executive toys’ shown here?
What happens to momentum when two moving objects collide?

To answer this, let’s look first at the simple case of two moving spheres 
colliding head-on.
Where will there be any impacts or impulses?
The point of impact will be the point where the two spheres touch.
Each sphere will exert an impulse on the other.
Remember that an impulse is a force acting for a short time.
What does Newton’s Third Law tell us about forces?
‘For every action there is an equal and opposite reaction’,
that is: ‘forces come in equal and opposite pairs’.
Therefore the impulse that sphere A exerts on sphere B is the same in 
magnitude as the impulse that sphere B exerts on sphere A.
On the diagram, we can label them as equal and opposite using J and �J.

In the following steps, the letters used are defined as follows:
● mA and mB stand for the masses of sphere A and sphere B, respectively,
● uA and uB stand for the initial speeds of the two spheres,
● vA and vB stand for the final speeds of the two spheres.

Next, we use

impulse � change in momentum

for each of the two impulses in turn.

The impulse produced by sphere A affects the momentum of sphere B.

So: J � mBvB � mBuB (1)

Similarly, the impulse produced by sphere B affects the momentum of sphere A.

�J � mAvA � mAuA (2)

As the two impulses are equal and opposite, we can add them together to get zero.
Adding equation (1) and equation (2):

0 � mBvB � mBuB � mAvA � mAuA

Moving the negative terms to the left-hand side:

mBuB � mAuA � mBvB � mAvA

Changing the order slightly:

mAuA � mBuB � mAvA � mBvB

In words this can be expressed as:

total momentum before collision � total momentum after collision

What does this equation tell us about collisions?
There is the same amount of momentum beforehand as there is afterwards.

The Principle of Conservation of Linear Momentum (CLM):

total momentum before collision � total momentum after collision

or mAuA � mBuB � mAvA � mBvB

A B

A B�J J

A

Before:

B
mA

uA uB

mB

A

After:

B
mA

vA vB

mB

A B
J

A B
�J
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This equation will be true provided there are no external forces acting
(such as friction or air resistance).

When we apply this equation to solve a problem, it is important to do two
particular things:
● always draw ‘Before’ and ‘After’ diagrams,
● label clearly the positive direction.

The positive direction is usually taken to be ‘to the right’, like the direction
of the x axis. Any velocity in the opposite direction will have a negative
sign and therefore the body in question would have a negative momentum.

It seems remarkable that the momentum is conserved in a case like this
example, where both the spheres are moving more slowly at the end.
The calculations show that the total of the positive and negative
momentums is the same before and after the collision.
Momentum has been conserved but energy has been lost from the system.

How many modelling assumptions can you pick out in the last question?
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Typical modelling assumptions for two spheres colliding:
● smooth spheres 
● equal radii
● sliding
● smooth horizontal surface
● collide directly (head-on)
● no other external forces acting

Example 7
Two smooth spheres of equal radii, A and B, are sliding towards each other across a smooth horizontal surface.
A has velocity 1.2 m s�1 and mass 0.4 kg. B has velocity 2.2 m s�1 and mass 0.1 kg.
They collide directly and the direction of B is reversed and its velocity is reduced to 1.4 m s�1.
What will be the new velocity of A? In which direction will it be travelling?

Draw ‘before’ and ‘after’ diagrams, with a clearly stated positive direction.
As we don’t know yet which way A will end up going, give it a possible velocity in the positive direction.
(If this assumption is wrong, the answer will be negative and we will know it is going the other way.)

CLM: total momentum before collision � total momentum after collision

0.4 � 1.2 � 0.1 � (�2.2) � 0.4 � v � 0.1 � 1.4

0.48 – 0.22 � 0.4v � 0.14

0.26 � 0.4v � 0.14

0.12 � 0.4v

0.12 � 0.4 � v

0.3 � v

The new speed of sphere A is 0.3 m s�1. Its direction is the same as it was before the collision.

1.2 m s�1

A

0.4 kg 0.1 kg

Before After�

2.2 m s�1

B
v

A

0.4 kg 0.1 kg

1.4 m s�1

B
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Collisions and explosions

We can apply the principle of Conservation of Linear Momentum (CLM) to
a variety of different situations. We have already seen how to deal with two
spheres colliding directly and separating again.
What other kinds of situations involving collision or impulse are there?

There are three other possibilities that need considering:
● colliding with a stationary object,
● two objects which coalesce,
● explosive separation.

Colliding with a stationary object
It sometimes feels odd using the same method that works for two moving
objects in the case where one body strikes an unmoving (stationary) object.

What are the similarities and differences?

Both objects exert an impulse on each other. However, the stationary object
has no momentum to start with and after the collision can only move in the
direction of the impulse it has received.

Example 8
A car of mass 760 kg is stationary when it is ‘shunted’ from behind by a car of mass 820 kg, travelling at 4 m s�1.
The speed of the moving car is reduced to 1 m s�1 by the impact.

What is the speed of the other car immediately after the impact?

As usual, we can take the positive direction to the right.
All the motion is in this direction in this question.

CLM: total momentum before collision � total momentum after collision

820 � 4 � 760 � 0 � 820 � 1 � 760 � v

3280 � 820 � 760v

3280 � 820 � 760v

2460 � 760v

2460 � 760 � v

3.24 (3 s.f.) � v

Immediately after being hit from behind, the other car moves forward with velocity 3.24 m s�1 (3 s.f.).

4 m s�1

820 kg 760 kg 820 kg 760 kg

1 m s�1
Before

at rest

After

v

�

TAKE IN PHOTO P6.6
2 cars, one driven into

back of the other
TO BE SUPPLIED
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Objects which coalesce
‘Coalescing’ means that the two objects join together and move as though
they were one single object. Can you think of some examples?
How about these: train trucks in the shunting yard, two space craft
docking, a bullet impacting into a charging tiger, a fly hitting the
windscreen of a car.

CLM still applies, but the single body after the collision has a mass equal to
the sum of the masses before the collision.

Explosive separation
This sounds quite dramatic, but in this context means the sudden powerful
separation of two objects. (A single object exploding into lots of little
pieces might be a bit too complicated to model at this stage in the course!)
A good example would be the firing of a bullet from a rifle.
We need to remember that the rifle is affected by the shot as much as the
bullet. The person firing the rifle would feel the recoil of the shot.
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Example 9
A boy of mass 44 kg is travelling with a
horizontal velocity of 0.85 m s�1 as he lands 
on his stationary skateboard. If the mass of the
skateboard is 1.7 kg, what will be the velocity 
of the boy and the skateboard immediately 
after they begin to move together?

CLM: total momentum before � total momentum after
44 � 0.85 � 1.7 � 0 � (44 � 1.7) � v

37.4 � 0 � 45.7v
37.4 � 45.7v

37.4 � 45.7 � v
v � 0.818 (3 s.f.)

Immediately after landing, the boy and skateboard move off with a velocity of 0.818 m s�1 (3 s.f.).

Example 10
A rifle with mass 5.6 kg fires a bullet of mass 4.6 g with an estimated muzzle velocity of 850 m s�1.
With what velocity will the rifle recoil immediately after the shot is fired?

CLM: total momentum before � total momentum after
5.6 � 0 � 0.0046 � 0 � 5.6 � (�v) � 0.0046 � 850

0 � �5.6v � 3.91
5.6v � 3.91

v � 3.91 � 5.6 
v � 0.698 (3 s.f.)

The rifle recoils with a velocity of 0.698 m s�1 (3 s.f.) immediately after the shot is fired.

850 m s�1at rest at rest

5.6 kg 4.6 g

Before After
v

�

0.85 m s�1

at rest

44 kg 1.7 kg total mass 45.7 kg

Before After
v

�
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Summary
● Momentum � mass � velocity momentum � mv

● Impulse � Force � time J � F � t

● Impulse = change in momentum J � mv � mu

● The units of momentum and impulse are N s (newton seconds).

● The Principle of Conservation of Linear Momentum (CLM):

total momentum before collision � total momentum after collision

End of Chapter Questions
1 Can you complete these sentences?

a) The units of momentum are …

b) The result of a force acting for a short time is
called an …

c) Momentum is the product of … and …

d) The force which produces an impulse is assumed
to be …

e) Linear momentum is conserved provided there
are no …

f) A head-on collision is described as 
‘colliding …’ .

2 What word is used to describe the situation where
two particles collide and remain attached after the
collision?

3 What is the momentum of a train of mass
24 tonnes, travelling at 0.14 m s�1?

4 Work out the momentum of a fly of mass 0.068 g,
flying at 1.2 m s�1.

5 Calculate the magnitude of the impulse of a
constant force of 1500 N acting for 0.009 seconds.

6 A ping-pong ball of mass 2 g has an initial speed of
1.85 m s�1, but after being hit by the player’s bat it
has a new speed of 3.42 m s�1 in the opposite
direction.

a) Calculate the magnitude of the impulse given to
the ping-pong ball.

b) If the bat is in contact with the ball for 0.088 s,
find also the magnitude of the constant force
acting to produce the impulse.

7 Two smooth spheres A and B, of equal radii, are
sliding towards each other across a smooth
horizontal surface. A has velocity 2.8 m s�1 and mass
0.5 kg. B has velocity 1.2 m s�1 and mass 0.8 kg.

After the collision, A is brought to rest. What will
be the new velocity of B?

8 A youth of mass 66 kg jumps with velocity
0.92 m s�1 onto a stationary supermarket trolley of
mass 26 kg. What will be the velocity with which
the youth riding the trolley moves off?

9 A ball of mass 500 g is moving at 4 m s�1 when it
receives an impulse of magnitude 0.8 Ns in the
opposite direction to its motion. Find the speed of
the ball immediately after the impulse.

10 A particle P of mass 2 kg is dropped from a height
of 0.6 m onto horizontal ground.
a) Find, to 2 s.f., the speed of P just before it hits

the ground.
The particle rebounds vertically from the ground
with speed 2.5 m s�1.
b) Find, to 2 s.f., the magnitude of the impulse

exerted on the ground by the ball in the impact.

11 Two particles P and Q have masses 0.5 kg and
0.2 kg respectively. They are moving in the same
direction along the same straight line with speeds
5 m s�1 and 2 m s�1 respectively when they collide.
After the collision, P continues to move along the
same line with speed 4 m s�1. Find the speed of Q
after the collision.

12 A railway truck of mass 35 tonnes is moving with a
speed of 4 m s�1 when it collides with a stationary
truck of mass 40 tonnes. The trucks couple
together and move off.
a) Find the common speed of the trucks after the

collision.
b) Find the magnitude of the impulse between the

trucks during the collision.
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13 Two particles A and B are at rest on a smooth
horizontal plane. The particles are connected by a
light inextensible string which is initially slack.
Particle A is projected away from particle B with a
speed of 3 m s�1. The mass of A is 3 kg and the
mass of B is 2 kg.

a) Find the speed of the particles just after the
string goes taut.

b) Find the magnitude of the impulse transmitted
through the string as the string goes taut.

14 A bullet of mass 20 g is fired horizontally into a
wall with a speed of 500 m s�1. The bullet becomes
embedded in the wall, coming to rest in 0.01
seconds.

a) Find the magnitude of the impulse exerted on
the wall by the bullet.

b) Find the magnitude of the constant resistive
force exerted on the bullet by the wall.

15 A heavy metal brick of mass 4 kg is dropped from a
height of 3 m above soft horizontal ground. On
striking the ground it sinks in a distance of 2 cm
before coming to rest. Find, to 3 s.f.,

a) the magnitude of the impulse exerted on the
brick by the ground,

b) the magnitude of the constant resistive force
exerted on the brick by the ground.

16 Particles P and Q are moving in opposite directions
on a smooth horizontal table. Particle P has mass
m and speed 3u and particle Q has mass km,
where k is a constant, and speed u. The particles
collide and as a result of the collision the direction
of motion of each particle is reversed and the
speed of each particle is halved.

a) Find the value of k.

a) Find, in terms of m and u, the magnitude of the
impulse exerted on P in the collision.

17 A toy rocket of mass 150 g is designed to split into
two parts, the smaller of which has mass 50 g.
When the toy is moving with speed 4 m s�1 it splits,
with the larger part continuing to move in the same
direction and the smaller part moving in the
opposite direction. Given that the speed of the
smaller part, u m s�1, is half of the speed of the
larger part, find the value of u.
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How to make the Examiner happy
● Always draw a big, clear ‘before’ and ‘after’ diagram, showing clearly the positive direction you are choosing.

This is best taken towards the right, as that is what we are used to from coordinate graphs.
● Include all the velocities and masses, in kilograms, on this diagram so that you have all the information in

front of you.
● Remember that objects moving to the left will have a negative momentum.
● When using CLM, always write a momentum equation, even if you can see that the masses might cancel out

(for example, where the collision is between two spheres, both of mass M kg).
● You might be asked about the assumptions that are commonly made when two spheres collide. We normally

assume that the spheres have equal radii, move freely on a smooth surface without rolling and collide
directly.
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Although friction has already been mentioned in this book, we have not so
far looked at its properties. It is a force with certain unique qualities.
Try to describe friction for yourself.

Where does friction happen?
It acts between the surfaces of two objects in contact.

What does it do?
It makes it difficult for smooth sliding to happen and may prevent
movement altogether.
It makes it possible to grip and turn objects.

Friction is vital to many of the everyday activities of life.
Without it we couldn’t walk, ladders would always fall down and no one
would be able to twist the lid off the marmalade!
All doors would have handles because it would be impossible to grip and
turn a doorknob!
Icy days and oily surfaces give us some idea of what it would be like
without friction.

In this chapter you will learn:
● what causes friction,
● the direction in which friction acts,
● how friction is related to the normal reaction force,
● why friction can change magnitude,
● the formula for modelling friction,
● how to use or find the coefficient of friction (�),
● how to solve problems which involve friction.

Defining friction

Even the smoothest of surfaces is not completely smooth at a microscopic
level. Seen at great magnification, a smooth object sliding over a smooth
surface may not look quite the same!

We know that friction makes it difficult for sliding to take place, but what
features of friction can we model mathematically?
Let’s begin by considering a situation where friction is likely to act.

Try doing this for yourself.
Place a book on a horizontal table, at the left hand side.
Push it from the left side to the right side of the desk.
Use as little force as possible and move it at a steady speed.
How was friction acting in this case?
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7 Friction

TAKE IN A/W A7.1
sandpaper rubbing wood

TO BE SUPPLIED

TAKE IN A/W A7.2
TO BE SUPPLIED

A car on a skid pan slides over the slippery
surface

TAKE IN PHOTO
P7.1

car at skid pan
TO BE SUPPLIED

TAKE IN A/W A7.3
hand pushing book
TO BE SUPPLIED
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The first thing you probably noticed was that you had to increase the force
you applied until the book started to move.
This is because friction was preventing the book from sliding until you
applied enough force.
In which direction did the friction act?
It was hindering the motion of the book and so it was in exactly the
opposite direction.

Were you able to move the book at a constant speed?
What does this tell us about friction?
Suppose we draw a force diagram of the situation once the book is moving
at a steady speed across the table.

The book is not moving up or down in a vertical direction.
What does this tell us about R and W?
They must be equal and opposite.

If the speed is steady, the acceleration is zero.
What can we deduce about P and F?
By Newton’s First Law, they too must be equal and opposite.

Did you feel you were exerting a constant force on the book?
This must mean that the magnitude of the friction was also constant.

Now try this experiment again with a pile of three books.
What changes do you notice?
It takes a greater force to get the books moving in the first place and to
keep them going at a steady speed.
This suggests that the frictional force is greater than before.

In fact, the frictional force between the two surfaces is increased because
the extra weight acting downwards presses the surfaces together more.

Here is a summary of the properties of friction that we have seen so far.

constant speed F � friction
P � pushing force

P

R

F

W
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General principles of friction:

● Friction acts between two surfaces in contact.
● Friction always opposes motion (i.e. acts in the opposite direction).
● Friction is proportional to the force pressing the two surfaces

together.
● There is no friction acting unless a force is applied.
● Friction only needs to be great enough to prevent motion if a small

force is applied.

TAKE IN A/W A7.4
hand pushing books
TO BE SUPPLIED
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The coefficient of friction

The 18th-century French physicist and military engineer, Charles Augustin
de Coulomb, whose name is best known for his work on electricity, also
developed the principles of friction into the model we use today.
Here are some definitions of important phrases related to friction.

Smooth contact means no friction is acting.

Rough contact means friction is likely to be acting.

Friction is a resistance force and only starts to come into play when there
is a force attempting to cause motion. Friction will increase in value to
prevent motion until it reaches its maximum value, written as Fmax.

When motion is about to take place, then the situation is in limiting
equilibrium and any increase in the acting force will be sufficient to
overcome the maximum value of friction and sliding will begin.

The maximum value of friction is proportional to the normal contact force
acting. The coefficient of proportionality is called the coefficient of
friction, �. (This is the Greek letter for m and is called ‘mu’.)

If the system is not in motion, friction only takes a large enough value to
prevent motion happening.

Friction can take the following range of values:

0 � F � Fmax, where Fmax � �R (R is the normal contact force)

Friction only takes its maximum value, i.e. F � Fmax, when the system is
in limiting equilibrium or motion is taking place.

Example 1
A block of wood with mass 10 kg is in rough contact with 
a wooden table.
The coefficient of friction between the two surfaces is 0.3.
A force, of magnitude P, is applied to the block. What will happen if 
a) P � 25 N, b) P � 30 N, c) P � 50 N?
State the magnitude of the frictional force and whether or 
not the block will move. (Take g � 10 m s�2.)

First we should calculate R, and then the maximum value of F.

Resolving vertically: R � 10 g � 10 � 10 � 100 N

Since Fmax � �R, Fmax � 0.3 � 100 � 30 N

As F � Fmax, F � 30 N

a) If P � 25 N, F will take the same value as P, F � 25 N. The block will not move.

b) If P � 30 N, F will take its maximum value, Fmax � 30 N. The block is now in limiting equilibrium.

c) If P � 50 N, F cannot exceed Fmax � 30 N. The block will now move in the direction of the force P.

Charles Augustin de Coulomb, 1736–1806

10 kg

10g N

R

PF
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In example 1, could the magnitude of F ever exceed the value of P?
No. If P is small, F will be equal to P.
Friction cannot produce motion, which is what would happen if F � P.

What can we say about the value of � if two surfaces are in smooth contact?
For smooth contact, � � 0 and therefore F � 0.

What is a typical value of �?
For smooth but unpolished objects on a table, � could be around 0.2 or 0.3.
For rubber tyres on a good road surface, � might be 0.7 or 0.8.
On an icy surface we might have values of � below 0.1.

Suppose we are considering an object lying on an inclined plane.
In which direction will the friction be acting?
Friction will oppose the direction in which motion is likely to take place.
Therefore, in the absence of other forces, it will act up the plane.

As we need to find the normal reaction force to calculate Fmax, and that
force acts perpendicular to the flat surfaces in contact, it is usually best to
begin by resolving all forces acting into components parallel and
perpendicular to the plane.
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Example 2
A crate of mass 30 kg is lying on a plane inclined at an angle of 25° to the horizontal.
The coefficient of friction between the two surfaces is 0.28. (Take g � 9.8 m s�2.)
The crate is in limiting equilibrium, with a force, P, acting together with friction to prevent the crate slipping.
What is the least value of P?

If P has its least value, the friction must take its highest value, Fmax.

to plane: R � 30g cos 25°
R � 30 � 9.8 � cos 25°
R � 266 N (3 s.f.)

Since in limiting equilibrium: F � Fmax � �R
� 0.28 � 266
� 74.6 N (3 s.f.)

to plane: P � Fmax � 30g sin 25°
P � 30 � 9.8 � sin 25° � Fmax

P � 124.2 � 74.6
P � 49.6 N (3 s.f.)

(As always, although the values have only been written down to 3 s.f., the full accuracy of the calculator was used
at each stage in the calculation and the numbers have only been rounded when they have been written down.)

25°

25°

30g cos 25°

30g sin 25°30g N

R P

F
F � µR
µ � 0.2

Friction on this surface will be low
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Problems involving friction

Now that we have established the mathematical model for friction, it can
crop up in any of the kinds of situations we have already met.

In most cases the best approach is to:
● resolve perpendicular to the plane where friction is occurring to find R,
● resolve parallel to this plane and use Fmax � �R.

The following examples include friction with each of Newton’s Laws.
Can you remember all three of Newton’s Laws?

Example 3
A large box of mass 22 kg is pulled across a horizontal floor by a horizontal rope.
The coefficient of friction between the floor and the box is 0.35 and the tension in 
the rope is 75 N. (Take g � 10 m s�2 and give final answers to 2 s.f.)
a) Will the speed of the box be constant?
b) Suppose the rope is raised to an angle of 30° with the horizontal.

If the tension remains the same, how will the motion of the box change?

a) Newton’s First Law says that an object will continue to travel at a
constant speed in the same direction if no resultant force is acting.
Is there a resultant force in any direction?

V: since there is no motion vertically: R � 22g N

R � 22 � 10 � 220 N

Now, we find the maximum value of friction: Fmax � �R

� 0.35 � 220

� 77 N
If T � 75 N, friction will also be 75 N.
As the forces balance in both directions, the box will be travelling at a constant speed.

b) Since the rope is at an angle, the tension will have horizontal and vertical components.

V: R � T sin 30° � 22g

R � 22 � 10 � 75 � sin 30°

� 220 � 37.5

� 182.5 N

H: friction: Fmax � �R

� 0.35 � 182.5

� 63.875 N

component of T : T cos 30° � 75 � cos 30°

� 64.952 N

As the component of tension exceeds the maximum value of friction, we need to use Newton’s Second Law to find
the acceleration produced, by considering the resultant force in the horizontal direction:

H: Using F � ma: 64.952 � 63.875 � 22a

1.08 � 22a

� a � 0.049 (2 s.f.)

The box will accelerate in the horizontal direction at a rate of 0.049 m s�2.

22 kg

22g N

T � 75 N

T sin 30°

T cos 30°
30°

R

F

22 kg

22g N

µ � 0.35

T � 75 N

R

F

p. 39
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Why was there less friction when the angle of the rope was 30° upwards?
The upwards pull is reducing the pressure of contact between the rough
surfaces. The upwards component is trying to pull the surfaces apart.

Finding the coefficient of friction
What information do we need to work out the coefficient of friction?
We can calculate � provided we know both R and Fmax.
What does this tell us about the physical situation?
It must be either in limiting equilibrium or in motion, since F = Fmax.

73

Calculating the value of �:

Since Fmax � �R, then � � �
Fm

R
ax
�

providing the system is in limiting equilibrium or motion is taking place.

Example 4
A young girl is sliding down a fairground slide on a mat. The mass of the child is 65 kg and the sloping part of the
slide makes an angle of 38° with the horizontal direction.
If she is travelling at a constant speed of 3.5 m s�1, what is the coefficient of friction between the slide and the mat?

to plane: R � 65g cos 38°

to plane: Fmax � 65g sin 38°

Since in motion: F � Fmax � �R

To find �: � � �
F

R
max
�

� ��
6
6
5
5
g
g

c
s
o
in
s

3
3
8
8
°
°

�

� � �
c
s
o
in
s

3
3
8
8
°
°

�

� � tan 38° (since �
c
s
o
in
s

	

	
� = tan 	)

� � 0.781 (3 s.f.)

Notice how the value of � is independent of the mass of the girl. This number would have cancelled from the top
and bottom of the fraction whatever it had been.
The value of � is also independent of the speed, provided there is motion and F � Fmax .

65g N

65g cos 38°

65g sin 38°

v � 3.5 m s�1

Fmax

38°

R

38°
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Friction and connected particles
Do you recall the main steps in the method we used before? (See chapter 5.)
We need to write an equation of motion for each particle and add these
equations to eliminate the tension.
We do the same here, but resolve perpendicular to the plane of motion first,
to find R, and then use Fmax � �R.

Example 5
A block of mass m kg is resting on a horizontal table. The coefficient of friction between the block and the 
table is �

2
5�. The block is connected by a light, inextensible string via a pulley at the end of the table to a 

hanging mass of 2m kg.

Find, in terms of m, the acceleration of the system when it is released from rest.

Using Newton’s Third Law, the magnitude of the tension forces acting on both objects will be the same.

Assuming the system will move, once released: F � Fmax � �R.

For the block on the table:

V: R � mg

Using Fmax � �R: Fmax � �
2
5� mg

H: T � Fmax � ma

� T � �
2
5� mg � ma …………………………(1)

For the hanging mass:

V: 2mg � T � 2ma ………………………....(2)

(1) � (2): 2mg � T � T � �
2
5� mg � ma � 2ma

2mg � �
2
5� mg � 3ma

�
1
5
0
�g ��

2
5� g � 3a

�
8
5� g � 3a

�1
8
5� g � a

Therefore, on release from rest, the acceleration of the system will be �1
8
5� g m s�2

R

T

T

Fmax

a

a

mg

µ �

2mg

m

2m

2
5

p. 46
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Summary
● Friction is a resistance force which acts between two surfaces in contact. 
● Friction always opposes motion (i.e. acts in the opposite direction and prevents motion if possible).
● The maximum value of friction is proportional to the Normal Reaction Force.
● Friction only takes its maximum value, Fmax, when the system is in limiting equilibrium or motion is taking

place.
● Friction only needs to be just great enough to prevent motion if a small force is applied.
● Friction can take the following range of values:

0 � F � Fmax, where Fmax � �R (R is the normal reaction force)

● Since Fmax � �R, then � � �
F

R
max
�

End of Chapter Questions
1 Can you complete these sentences?

a) Friction acts between … in contact.

b) Friction will only be great enough to … motion.

c) An object just on the point of moving is said to
be in … equilibrium.

d) The description … means no friction is acting.

e) Friction is proportional to the … force.

f) � is the … of friction.

g) Friction cannot cause … to take place.

h) The direction of friction is always opposite 
to … .

2 Suppose a body is sliding at a constant speed down
an inclined plane. Name two important quantities
to which the coefficient of friction is independent.

3 What is the minimum value of the frictional force?

4 If R � 60 N and � � 0.24, what is the value of Fmax?

5 If Fmax � 43 N and R � 120 N, what is �?

6 If Fmax � 111.6 N and � � 0.372, what is R?

7 A tin of paint with mass 6 kg is placed on a wooden
workshop bench. The coefficient of friction
between the tin and the bench is 0.4. If a horizontal
force of 20 N is applied to the tin of paint, will it
move? (Take g � 9.8 m s-2.)

8 A wooden log of mass 95 kg is being hauled up a
slope inclined at 12° to the horizontal. The
coefficient of friction between the log and the slope
is 0.53. The rope attached to the log is parallel to
the slope. What value must the tension in the rope
take for motion with constant speed to take place?
(Take g � 9.8 m s-2)

9 A block is at rest on a rough horizontal plane and
the coefficient of friction between the block and
the plane is �. The block is subjected to a
horizontal force. Find, in each case,
a) the value of the frictional force,
b) the acceleration of the block.

i)

ii)

iii)

iv)

8 kg � �56 N 5
7

40 N
10 kg� � 2

5

25 N
5 kg� � 4

7

49 N
10 kg � � 1

2
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10 In each case, the block shown is in limiting
equilibrium, on a rough horizontal plane and the
coefficient of friction between the block and the
plane is �. Find P in each case.

a)

b)

11 A box of mass 2 kg is placed on a rough plane
which is inclined to the horizontal at an angle 	.
The coefficient of friction between the box and the
plane is 0.5. Find the maximum value 	 for which
the box will remain at rest.

12 A particle of mass 4 kg is held in equilibrium on a
rough plane which is inclined to the horizontal at
an angle of 20°, by a horizontal force of magnitude
5 N. Given that the particle is on the point of

slipping down the plane, find, to 3 s.f. the
coefficient of friction between the particle and the
plane.

13 A trunk of mass 50 kg is at rest on a rough
horizontal plane. The coefficient of friction
between the plane and the trunk is 0.4. The trunk
is then dragged at a constant speed across the
plane by a rope which is attached to the trunk and
makes a constant angle of tan�1 (�

3
4�) with the

horizontal. Find

a) the normal reaction between the trunk and the
plane,

b) the tension in the rope.

14 A particle of weight 30 N is held in equilibrium on a
rough plane, which is inclined to the horizontal at
an angle of 45°, by a force of magnitude P acting
parallel to and up the plane. Given that the
coefficient of friction between the particle and the
plane is �

1
3�, find the complete range of possible

values of P.

P

10 kg 60°
� � 3

P 6 kg � � 1
3

How to make the Examiner happy
● In general, and on your diagram, use F for friction. Only write Fmax once you have stated or shown that the

system is in limiting equilibrium.
● Where F � �R, state why and give its magnitude (equal to the opposing force).
● Use the terms ‘smooth’ and ‘rough’ in your solution as appropriate.
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THIS CHAPTER IS ONE PAGE SHORT FOR DOUBLE PAGE SPREADS. 
PLEASE ADVISE.

07 Ch7 pp 068-077.qxd  26/1/05  5:04 pm  Page 77



If you have never studied mechanics before, you probably will not guess
what a moment is.

This is a case where an everyday word is used in mechanics to mean a very
specific mathematical idea.

Try the following experiment.
Close this book and place it flat on the table in front of you.
Push it with your finger in the middle of one side.
Can you make it move in a straight line without turning at all?
It may be difficult, but it’s not impossible.
Now try to do the same, but with your finger pushing at one of the corners.
What happens now?
It’s always going to turn, isn’t it?!

The topic of moments is all about the way a force can have a turning effect,
depending on where it is acting.

In this chapter you will learn:
● about forces acting on rigid bodies,
● how to calculate the moment of a force,
● what happens around pivots,
● how to describe the sense of a moment,
● how to make moments balance.

The moment of a force

What do we mean by a ‘particle model’?
This is when the object in question is considered to be reduced to a single
point.
One of the real-life features that we ignore in this case is rotation.
A single force acting on a particle will produce motion in the same
direction as the force itself.

Of course, in the real world, the objects that we deal with are larger than
single points and their shapes can make a difference to the way they behave
if a force is applied.

What model do we need for different shapes?
We use the ‘rigid body’ model, in which the lengths and distances are used
but considered to be fixed and unchanging.

In the experiment at the start of this chapter, the place where the force is
applied to the book makes a real difference to the outcome.
The force applied at the corner produces a turning effect. However, the force
acting in the middle of a side is able to move the book in a straight line.

The moment of a force is the name we give to the ability of the force to
produce a turning effect on the rigid body on which it is acting.
(In physics, the word torque is used to describe the same concept.)
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8 Moments
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Two specific mechanical quantities affect the size of the moment of a force.
What do you think they are?

The size of the force is one of the factors. Clearly, the larger the magnitude
of the force, the greater its potential to turn a rigid body.
The other factor is the distance at which the force is acting, measured from
the point we are considering as the centre of rotation for the turning effect.

Imagine you are walking along a plank of wood, which is resting against a
log. Once you have passed over the point where it is balanced, you know it
will soon tip. The further you walk along the plank, the sooner you expect it
to tip!

Providing we are using the usual SI units, the moment of a force is simply
the magnitude of the force multiplied by the distance at which the force is
acting from the possible centre of the rotation.
This point may also be called the pivot or fulcrum, or it could be a hinge.

Notice that the distance is measured perpendicular to the line of action of
the force. 
We will look at a simple case first. The method for dealing with a force
acting at an angle other than 90° will be explained later.
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The moment of a force about a point:

M � Fd

Given that:
M � the moment of the force (N m)
F � the magnitude of the force (N)
d � the perpendicular distance of the line of

action of the force from the point (m)

Example 1
A wooden plank overhangs the end of a brick wall. A lunchbox with a weight of 8.4 N is put on it.
Find the moment about the end of the wall if the lunchbox is a) 0.8 m and b) 1.3 m from the wall.

a) Here, the force is the weight of the lunchbox.

Moment about the end of the wall: M � 8.4 � 0.8 � 6.72 N m

b) Now, with the lunchbox in the other position.

Moment about the end of the wall: M � 8.4 � 1.3 � 10.92 N m

1.3 m

8.4 N

0.8 m

8.4 N

F

d
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Taking moments

When we want to find the overall turning effect of one or more forces
acting on a rigid body, the process we use is called taking moments.

If there are a number of forces acting, we simply add together the separate
moments to obtain the overall moment.
If there are more forces acting, will that always mean that the total moment
is bigger? Can you think of any cases where it might not be true?
The following examples will take you through the different kinds of things
that can happen, including some special cases.

What terms do we use to describe the two different directions that a shape
in a flat plane can rotate?
You probably remember from studying transformations that a rotation can
be either clockwise or anticlockwise.
It is reasonable to use the same language when we refer to moments.

Example 2
Two cans of paint, with masses 2 kg and 3 kg, are
placed on the end of a shelf, at distances 40 cm
and 75 cm, respectively, from the supporting
bracket. (Take g � 9.8 m s�2.)

Find the total moment produced by the 
weights of these two cans.

Take moments about A: ( A  means ‘taking clockwise moments about point A’)

Total moment, M � 2g � 0.4 � 3g � 0.75 (NB: the lengths have been converted to metres.)

� 2 � 9.8 � 0.4 � 3 � 9.8 � 0.75

� 7.84 � 22.05

� 29.89 N m

��

The sense or direction of a moment:

A force may produce a moment that is either clockwise or anticlockwise.

If clockwise is taken as the positive direction, then:
● a clockwise moment is positive
● an anticlockwise moment is negative.

Example 3
What is the total clockwise moment, about P, of the three 
forces acting at the distances shown in the diagram?

Let’s work out the moment about P for each force in turn.
As we are finding the clockwise moment, any anticlockwise 
moment will be counted as negative.

P: M � � (15 � 4) � 12 � 3 � 10 � 5 (The moment of the first force is anticlockwise.)

� � 60 � 36 � 50
� 26 N m (clockwise)

�

40 cm
75 cm

2g N 3g N

clockwise anticlockwise

4 m 3 m 2 mP

15 N 12 N 10 N
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Forces at an angle
If the force is not acting in a direction perpendicular to the rigid body, will
the turning effect be bigger or smaller?
In fact the greatest turning effect is achieved when the angle is 90°.
If the force is at any other angle, the moment is reduced.

Did you notice that one of the moments in the last example was zero?
Why was that?
It was because the line of action of the force went straight through the
point about which moments were being taken.
In mathematical terms, the moment was zero because the distance from the
point to the force was also zero.
A commonsense explanation would be that a force pulling directly on the
pivot can’t make the lamina rotate either one way or the other.
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The moment of a force at an angle:

M � Fd sin �

where � is the angle between the rigid body and the force.

The perpendicular distance from the point to the force is d sin �.

A force through a point:

The moment of a force about a point through which it is acting is
zero.

Since d � 0, then M � F � 0 � 0

Example 4
A square lamina of side length 2 m is hinged 
to a smooth flat surface at one corner, A.
It is free to rotate smoothly about this point.
Find the total clockwise moment, about A,
of the three forces acting as shown in the diagram.

(HINT: It helps to extend the line of action of the angled 
force and draw in a perpendicular line from the pivot point.)

Next, take moments about A, considering each force in turn.

A: 5 � 0 � 8 � 2 � �(10 � 2 sin 30°)

� 0 � 16 � 20 � 0.5

� 16 � 10

� 6 N m (clockwise)

�

d sin

d

F

�

�

60°

2 m2 m

5 N

8 N

10 N

B

A D

C2 m

2 m

60°

30°

2 m2 m

5 N

8 N

10 N

B

A D

C2 m

2 m

2 sin 30°

Examination Requirements
Although this method is included for
completeness of the topic, the method
for finding the moment of a force at an
angle will not be tested in the M1
examination.
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Balancing

How can we seat an adult and a child on a seesaw so that it will balance in
the horizontal position? Have you ever tried this?
The answer is that the adult needs to be closer to the pivot than the child.

Try the following practical experiment. Balance a 30 cm ruler on a pen or
pencil with flat sides. Take 9 identical coins and place a pile of 3 on one
side and a pile of 6 on the other side. Move the piles about until the ruler
balances. What do you notice?

The small pile should be twice as far away from the centre as the large pile.
We know that the moment of each pile of coins will be the product of its
weight and the distance from the pivot. For these to be equal, the pile that
is twice as big will have to be half the distance compared to the small pile.

Now let’s try to apply that to the two people on a seesaw.

In example 5, one person will cause a clockwise moment about the central
pivot and the other an anticlockwise moment. In general, the moments in
the two different directions will have to be equal for balancing.

Example 5
A man of mass 80 kg and his daughter of mass 40 kg are trying to balance on a seesaw.
If the girl is 2.6 m from the fulcrum, find the distance of her father from the same point.

Let the man’s distance be x. 
Remember that we need to consider forces to calculate moments, so we must use their weights and not just their
masses. (Take g � 10 m s�2.)

For the girl: moment � 40g � 2.6
� 1040 N m (anticlockwise)

For the man: moment � 80g � x
� 800x N m (clockwise)

For the two to balance: 800x � 1040
x � 1040 � 800
x � 1.3 m

The man will be 1.3 m from the fulcrum. This is exactly half as far as his daughter.

40g N

2.6 m
x m

80g N

TAKE IN A/W A8.5
see-saw

TO BE SUPPLIED

TAKE IN A/W A8.7
see-saw (balanced)
TO BE SUPPLIED
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What will happen if we simply calculate the total moment in (say) the
clockwise direction?
Since any anticlockwise moment will count as negative, then the total will
be zero, if the moments in the two directions are equal in magnitude.

In the following example the first approach has been used, as it is easy to
see which forces will produce clockwise moments and which will produce
anticlockwise moments.
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Example 6
Four forces as shown act upon a lamina in the shape of an isosceles right-angled triangle, whose perpendicular
sides are 4 m in length.
The moments of the forces balance each other out.

By equating the clockwise and the anticlockwise moments, find the magnitude of the force labelled X.
Find also the resultant force acting on the lamina.

(NB: AM � 4 sin 45°)

Equating moments about A:

sum of clockwise moments � sum of anticlockwise moments

10 � 4 � 3 � 2 � 12 � 4 sin 45° � X � 4

40 � 6 � 48 sin 45° � 4X

46 � 48 sin 45° � 4X

(46 � 48 sin 45°) � 4 � X

X � 3.01 N (3 s.f.)

We can find the resultant force in vector form, taking the i and j unit 
vectors as shown in the diagram above.
The 12 N force needs to be resolved into components.

Resultant force � 10i � 3.01j � 3j � ( � 12 cos 45° i � 12 sin 45° j)

� (10 � 12 cos 45°)i � (3.01 � 12 sin 45° � 3) j

� (1.51i � 8.50j ) N (3 s.f.)

From these two results we can tell that the lamina is not rotating as the total moment is zero, 
but that it will be moving and accelerating in a direction parallel to the resultant force.

45°

45°

3 N

X N

10 N

12 N

4 m

2 m2 m

B

A C

M j

i

For the overall turning effects to balance:

Either total clockwise moment � total anticlockwise moment 

or total moment about any point must be zero

45°

12 N

12 cos 45°

12 sin 45°

Parallel Forces
Only questions featuring parallel forces
will be included in the examination.
Example 6 is included for
completeness and interest.
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Maths in Action: How High Can You Stack?

Librarians worry about it. So do school teachers and the people
who run bookshops. It’s the problem of how high you can stack
a pile of books before they topple over.

If you place a single book on a desk, it will of course be stable.
If you then place a second book on top, that too might be
stable, unless it projects too far over the edge of the book
below.

Where is the point at which the top book will topple over the
edge? Your intuition might tell you that the tipping point is
when more than half of the top book is projecting over the
bottom book. This can be explained using some simple
mechanics.

The downward force on the top book is distributed evenly across its area, but fortunately this force can be
represented at a single point, known as its centre of mass, which makes the analysis simpler. If the mass is
evenly distributed, this will be halfway down the length of the book. Newton’s third law says that there will be
an equal and opposite reaction from the book below pushing upwards, which can also be represented as
acting through a single point. In the first diagram, these forces are in equilibrium.

When the top book projects more than half way over the bottom one, the upward force from the bottom book
can no longer line up with the downward force on the top book (it can’t push up beyond its edge!). The
unaligned forces create a moment (or turning effect), causing the top book to topple over.

What happens if we add a third book? We already know that the top book won’t topple if it projects less than
halfway over the book below it. If we then imagine the top two books being glued together, the centre of
gravity of the two books will be �

1
4� of the way along the top book. Using the same principle as before, the stack

of books will be stable so long as the centre of gravity of the top two books does not project beyond the edge
of the bottom book.

This means that the top book of the three can project �
3
4� of its width over the bottom book without the pile

toppling over.

downward force from top book

reaction from bottom book

Moment causes
top book to topple

downward force from top books

reaction from bottom book
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PICTURE TO BE INSERTED
TO BE SUPPLIED
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The calculations for four or more books are rather more complicated, but the principle of calculating the
combined centre of mass of the books still applies.

It turns out that there is a surprising pattern in the amount by which the top book can project beyond the
bottom one. There is a series known as the harmonic numbers which is defined as follows:

HN � 1 � �
1
2� � �

1
3� � �

1
4� � … � �

N
1

�

The proportion by which the top book in a pile of N books can project over the bottom book turns out to be 

be �
H(N

2
� 1)
�.

So, if there are two books, the top one can overhang by �
1
2�

In a pile of three books, the top one can overhang by � �
3
4�

In a pile of four books, the top one can overhang by � �
1
1

1
2�

And in a pile of five books, the top one can overhang by �
2
2

5
4�, which is more than 1!

In other words it projects beyond the bottom book.

In fact, if you build a stack that is high enough, it is theoretically possible for the top book to project out as far
as you want, making a smoothly curving tower. Architects or sculptors could use this principle to build a
leaning tower that didn’t require any joints … though a gust of wind or a flock of seagulls landing on the top
layer could bring the whole thing tumbling down!

(1 � �
1
2� � �

1
3�)

��
2

(1 � �
1
2�)

�
2

Top book appears to be
suspended over thin air
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End of Chapter Questions
1 Can you complete these sentences?

a) The moment of a force is its ability to … a rigid
body.

b) The moment is the product of the size of the
force and …

c) The two possible directions of a moment are …
and … .

d) The moment of a force about a point through
which it acts is …

e) Finding and adding all the moments about a
certain point is called …

f) For forces at an angle, we use … to find the
perpendicular distance.

g) For moments to balance, the total clockwise
moment must equal …

2 The pivot or hinge is also called the …

3 What is the moment of a force of 3.8 N, acting at a
perpendicular distance of 1.5 m from the pivot?

4 A rod AB of length 6 m is hinged at its centre, C.
There is a mass of 24 kg at A. What mass must be
placed at a distance 2 m from the other end, B, in
order to balance this?

5 A monkey of mass 3.9 kg moves along a plank of
wood which rests on and extends from a wall. If the
moment about the end of the wall exceeds 75 N m,
the plank will tip. How far out can the monkey
safely go?

6 The following forces are acting perpendicular to a
light rod PQ of length 4 m; 8 N upwards at a
distance of 0.6 m from P, 5.2 N downwards at 3 m
from P, 1.9 N upwards at 3.8 m from P. Find the
total moment about P.

7 A tyre of mass 28 kg is placed on one end of a
seesaw 8 m long. Where must a boy of mass 56 kg
sit in order to balance the seesaw horizontally?
Where necessary, in questions 8–12, assume
that the weight force acts downwards from
the centre of a rod, plank or beam.

8 In each of the following diagrams a light rod is in
equilibrium under the action of forces acting
perpendicular to its length. Find, in each case, the
magnitude of the unknown forces.

a)

b)

c)

d)

Summary
● The moment of a force is the ability of the force to produce a turning effect on a rigid body.
● The formula for working out the moment of a force is: M � Fd, where d is the perpendicular distance from

the point to the line of action of the force.
● Taking moments is the process of finding the overall turning effect of one or more forces acting on a rigid

body.
● A force may produce a moment that is either clockwise or anticlockwise.
● For a force at an angle of � to the rigid body, M � Fd sin �. (Not required for M1 examination)
● The moment of a force about a point through which it is acting is zero.
● The turning effects of the forces acting will balance out if

either total moment about any point is zero
or total clockwise moment � total anticlockwise moment.

Q

P

50 N

2 m 2 m

S

R

10 N

1 m 2 m

UT

70 N

6 m 8 m

X

300 NW

5 m3 m 2 m
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9 A uniform rod AB of length 8 m and mass 50 kg
rests on a support at the point C of the rod where
AC � 3 m. A particle of mass m is attached to the
rod at the point A and as a result the rod can rest
in equilibrium in a horizontal position.

a) Find the value of m.

b) Find the magnitude of the force acting on the
rod at the point C.

10 In each of the following diagrams a light rod is in
equilibrium under the action of forces acting
perpendicular to its length. Find, in each case, the
value of x.
a)

b)

11 A uniform plank AB of length 10 m and weight
560 N rests on a horizontal raised platform. The
end B overhangs the edge of the platform by 2 m. A
man of weight 1400 N walks from A to B.

a) Find the distance of the man from B when the
plank is about to tilt.

b) Find the smallest weight W newtons which can
be placed on the plank at A in order to enable
the man to walk safely all the way along the
plank without it tilting.

12 A uniform gymnast’s beam PQ of length 6 m and
weight 180 N is supported in a horizontal position
by two vertical ropes. The ropes are attached to the
beam at points R and S, where PR � 1 m and
SQ � 2 m.

a) Find the tension in each of the two ropes.

When a weight W is placed on the beam at the end
Q, the beam is on the point of tilting.

b) State the value of the tension in the rope
attached at R.

Find

c) the tension in the rope attached at S,

d) the value of W.

87

P

100 N10 N 50 N

3x2.5 m
x

60 N 40 N

Q

x 2 m2 m2 m

A B
10 m

2 m

How to make the Examiner happy
● We always write the formula for the moment as M � F � d. In your calculations, always put the magnitude of

the force first and the distance afterwards.
● Make it really clear if you are taking clockwise or anticlockwise moments.
● Indicate the point about which you are taking moments on your diagram.
● State the direction of the moment with your final answer.
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What do we mean when we say something is static?
We would normally use this word to mean stationary or still, as opposed to
moving. It could also mean ‘unchanging’ in some other respect.
The Financial Times might say that ‘share prices remain static’ if they
have kept the same value.

In mechanics, the study of statics refers to the conditions that keep a
particle or rigid body from moving. It will involve forces of all kinds, such
as weight, reaction, tension, thrust and friction. We will also be calculating
moments of forces in some cases. We have met all of these ideas before.

This final chapter therefore gives us the opportunity to bring together ideas
from many of the areas of mechanics that we have studied so far.
You might like to look back at the chapter summaries from earlier in the
book before continuing with this topic.

In this chapter you will learn:
● the meaning of equilibrium,
● how to find and use the resultant force,
● how to resolve and equate forces in perpendicular directions,
● how to calculate and use the total moment,
● the general conditions for the equilibrium of a rigid body.

Equilibrium of a particle

Equilibrium is a word which normally refers to a sense of balance or rest.
What could equilibrium mean in the context of mechanics?
There are two types of equilibrium in mechanics.

The obvious kind, which involves an object remaining stationary at rest
under the action of a system of forces, is called static equilibrium.
This is the sort of equilibrium dealt with in this chapter.

There is another type of equilibrium, in which the forces balance, but the
body in question is not at rest. Do you remember Newton’s First Law?
It says: ‘A body will continue to remain at rest or move at constant speed in
a straight line unless an external force makes it act otherwise’.
This is called dynamic equilibrium and, as the forces are in balance, there
is no acceleration. However, the body continues to move with constant
speed in a straight line. 
In both kinds of equilibrium, there are either no external forces acting or
the forces balance out.

If all the forces acting are in the same two-dimensional plane, then they can
be described as a system of coplanar forces. (We could use i and j.)
The problems we will be looking at will all be either one-dimensional or
two-dimensional in nature, although the same theory applies just as well to
equilibrium in three dimensions. (We could use i, j and k.)

In the following examples, think what forces are acting and look for ones
which must balance out for equilibrium to be preserved.

88

9 Statics

p. 39
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Example 2
a) State the value of each of the lettered forces, if the particle is at rest in equilibrium:

i) ii) iii)

Answers: R � 50 N T � 125 N S � 100 N, Q � 0 N

b) A particle is at rest in equilibrium under the action of the following 
six forces (all in newtons):

5i, pj, �20j, 12i, qi, and 8j.

Sketch the situation and calculate the values of p and q.

Consider the forces in the i direction and the j direction separately.

For the forces to balance each other out:

q � �(12 � 5) and p � �(�20 � 8)
q � �17 N p � 12 N

These situations have all involved two or more forces.
Can a particle remain in equilibrium under the action of one force?
No, this is impossible. Newton’s Laws tell us that the particle would
experience an acceleration in accordance with the rule: F � ma.
Perhaps we could argue for the rather trivial case where the magnitude of
the force is zero! That is really the same as there being no force acting.

Can you describe how it would be possible for a particle to
remain at rest in equilibrium under the action of two forces?
The two forces must be equal in magnitude and opposite in
direction.
They will also act along the same line, as they will both have to
act on the particle itself.

89

Example 1
For each of the situations described below, draw a force diagram and state which forces must be equal for the
object to remain at rest in equilibrium.
a) A glass paperweight is placed on a horizontal table.
b) Two equally strong tug-of-war teams competing in the gym have reached a standstill.
c) A car is parked on a flat road and a child is trying to push it, but it doesn’t move at all.

a) b) c) 

Weight � Reaction T1 � T2 Weight � Reaction

W1 � R1, W2 � R2 Force � Friction

T1 � Fr1, T2 � Fr2

For equilibrium under two forces:
The two forces must be
● equal in magnitude
● opposite in direction
● acting along the same line.

Reaction

Weight

R1

W1

Fr1
T1

R2

W2

T2 Fr2

Reaction

Weight

Force Friction

R

50 N

T 125 N S

Q

100 N

pj

5i
12i

8j

qi

�20j
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Equating forces

The application of a force will cause a particle to accelerate in proportion
to its mass. (This is a form of Newton’s Second Law.)
How do we normally state this?
The equation is: F = ma.

In this equation, F is the resultant of any forces acting on a particle.
Since the mass of a particle is usually not zero, the only way that the
acceleration will be zero is if the force is zero.
This gives us the crucial mathematical condition for equilibrium.

How does this become a useful method?
We find the resultant force acting in a given situation and use the fact that
it must be equal to the zero vector for equilibrium to be maintained.

Condition for equilibrium of a particle (1):

For equilibrium, the resultant force must be zero

i.e. R � 0, where 0 is the zero vector.

In unit-vector form: R � 0i � 0j

Example 3
A particle is at rest under the action of three forces, F1, F2 and F3.
If F1 � (8i � 18j) N and F2 � (4i + 5j) N, find F3 in unit vector form and state its magnitude.

It is always a good idea to sketch the problem.
(This might help us, for example, to spot an 
error in the sign of our answer.)

An estimate for F3 has been drawn in.

In this kind of question, it is easiest to express the 
unknown vector in component form.
Let F3 � ai � bj

Now apply the condition for equilibrium: R � 0

� F1 � F2 � F3 � 0

� (8i � 18j) � (4i � 5j) � ai � bj � 0

Collecting similar components together:
(8i � 4i � ai) � (�18j � 5j � bj) � 0i � 0j

(12i � ai) � (�13j � bj) � 0i � 0j

� a � �12, b � 13
So: F3 � (�12i � 13j) N

Using Pythagoras’ Theorem to find the magnitude:

F3 � �((�12�)2 � 1�32)�

� �(144 �� 169)�

� �313�

� 17.7 N (3 s.f.)

TAKE IN A/W A9.2
finger pushing snooker

ball
TO BE SUPPLIED

F3
F2

F1

j

i

F3

13

12
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In example 3, what we did in effect was to choose our values for a and b so
that the corresponding components of the resultant force became zero.
In fact, this leads to an alternative approach to solving equilibrium
problems that we will look at in the next section.

Let’s take another look at the solution to the problem in the last example.
What will happen if we draw all three forces consecutively on the same
diagram?
Since F1 + F2 + F3 = 0, they make a triangle of forces.
Why do they make a triangle?
This is because if the sum of three vectors is zero, then when they are
placed in sequence, the total ‘journey’ takes you back to where you start.

For equilibrium problems involving only three forces we can use this
property to obtain our solution.

This was a particularly good question in which to use the ‘triangle of
forces’ approach, because it was a right-angled triangle. However, we could
always have used the sine rule or the cosine rule if we had needed to.

F3

F1

F2

F2
F1

F3
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Example 4
A stage fairy is being flown on wires connected to a harness. At the moment when she 
is in equilibrium over the middle of the stage, one wire is at an angle of 65° above the
horizontal and the other is at 25° above the horizontal. The mass of the fairy is 85 kg. 
(Take the value of g to be 9.8 m s�2.) Find the magnitude of the tensions in the two wires.

First of all we sketch the situation.

Next we redraw the forces into a 
triangle, transferring the angles.
By using angle facts (e.g. angles 
between parallel lines) it is possible 
to identify the angles inside the triangle.

As this is a right-angled triangle, it is easy to calculate the forces required.
T1 � 833 cos 25° � 755 N (3 s.f.)

T2 � 833 sin 25° � 352 N (3 s.f.)

65°

65°

85g N

25°

T1

T2

65°

833 N

25°

25°

T1

T2

833 N
T1

T2

25°

85g N

65° 25°

T1 T2
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Resolving forces

What do we do if there are more than three forces acting and they are not
simply horizontal or vertical?
It will be necessary to choose appropriate perpendicular directions and
resolve the forces into components in those two directions. We can then
ensure that the component of the resultant force in each direction is zero.

If there are a number of forces in different directions, the simplest method
may be to resolve all the forces into horizontal and vertical components.

When is this not the best approach?
There is the possibility that a majority of the forces act predominantly in a
different pair of perpendicular directions.

What is an example of that?
An object on a rough inclined plane will have at least two forces acting
perpendicular to each other but not horizontal and vertical.
For problems of this kind it is best to resolve in directions parallel and
perpendicular to the plane.

Example 5
An object of mass 40 kg lies at rest on a rough plane inclined at an angle of 32° to the horizontal direction.
The coefficient of friction between the object and the plane is 0.6.
Taking g � 9.8 m s�2, find, correct to 3 significant figures, the magnitude of the least additional force needed to
stop the object from sliding down the plane.

As the object is on the point of sliding down the plane, 
it is in limiting equilibrium with friction acting up the plane.

Let the extra force be P.

The weight is the only force
that needs to be resolved
into components.

We need to find the value of the frictional force, so let’s first find R.

Equating forces to the plane: R � 40g cos 32°

Since in limiting equilibrium: F � Fmax

� �R
� 0.6 � 40g cos 32°
� 199 N (3 s.f.)

Equating forces to the plane: P � Fmax � 40g sin 32°
P � 0.6 � 40g cos 32° � 40g sin 32°

P � 40g sin 32° � 0.6 � 40g cos 32°
P � 8.27 N (3 s.f.)

� An additional force of 8.27 N acting up the plane will be sufficient to prevent the object from sliding.

32°

R
P F

32°

40g sin 32°

40g cos 32°

� 0.6�

40g N
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What we have just used is a particular application of the condition for
equilibrium that the resultant force must be zero. 
If the resultant force is expressed in component form, regardless of the
direction of the perpendicular components, each component will be zero.

What difference does this make?
Rather than dealing with the resultant as a whole, we can consider the
components in each direction separately.

So, we can do either of the following:
● make the components in any direction sum to zero
● equate the positive and negative components in a given direction.

In the following example, as there is no particular pattern to the angles of
the forces, we will simply resolve all of them into horizontal and vertical
components, using unit vectors.
We can then make sure they sum to zero in each direction.

93

Condition for equilibrium of a particle (2):

For equilibrium, the component of the resultant force in any
direction must be zero.

i.e. if: R � pi � qj, where the unit vectors act in any suitable
perpendicular directions

then: p � 0 and q � 0

Example 6
A particle is in equilibrium under the action of the forces 
shown in the diagram.
What must be the magnitude and direction of P?

Let us consider first the horizontal components and then 
the vertical components, where i and j are in the directions shown. 
Also, let P � (ai � bj) N.

i components: a � 12 cos 20° � 6 sin 30° � 14 cos 39° � 10 cos 45° � 0
a � 14 cos 39° � 10 cos 45° � 12 cos 20° � 6 sin 30°
a � 3.67 N (3 s.f)

j components: b � 12 sin 20° � 6 cos 30° � 14 sin 39° � 10 sin 45° � 0
b � 6 cos 30° � 14 sin 39° � 12 sin 20° � 10 sin 45°
b � 2.83 N (3 s.f.)

� P � (3.67i � 2.83j) N

By Pythagoras: P � �(3.672�� 2.8�32)�
� �21.5�
� 4.64 N (3 s.f.)

Angle with i direction: � � tan�1 (2.83 � 3.67) � 37.6°

� Force P has a magnitude of 4.64 N and acts at an angle of 37.6° with the i direction.

20°
39°
45°

30°

6 N

12 NP
10 N

14 N

j

i

3.67
θ

2.83
P
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General equilibrium of a rigid body

Is it possible to have a situation where the resultant force is zero but the
object is not in equilibrium?

Compare the following two situations.
Equal and opposite forces act on a square lamina in a horizontal plane.
In the first case they act in the middle of opposite sides.
In the second case they act at diagonally opposite corners, as shown.
What will happen?
Try it for yourself with a flat book, pushing with equal force at the two
places shown.

In the first instance, the lamina will rest in equilibrium.
However, in the second case, the lamina will rotate about its centre.

What is the mathematical difference?
In both cases the resultant force is zero. But what if we consider
moments?
In the first case the moment of both forces about the centre will be zero,
but in the second, both forces will have a clockwise moment about the
centre. 
The result is that the lamina will rotate on the spot.

For equilibrium, we need to be sure that there is no rotation, as well as
there being no movement through space, i.e. no translation.
This means that the total moment of the forces has to be zero as well as the 
resultant force being zero.

There are therefore two aspects to ensuring equilibrium of a rigid body:
● the forces must balance
● the moments must balance.

How does this become a practical method?

The two steps of the method correspond to the two different aspects:
● resolve the forces acting into components in two directions and make

sure the component in each direction is zero
● take moments about a suitable point and ensure the sum is zero.

Remember to take moments about the point with the most forces through
it, since the moment of each of those forces will be zero.

C
P P

C

P

P

Conditions for equilibrium of a rigid body:

the resultant force in any direction must be zero

and

the sum of the moments about any point must be zero
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Example 7
A lamina, measuring 2 m by 4 m is acted upon by
several forces, as shown in the diagram. (All forces are
in newtons.) Show that the lamina will be in
equilibrium under the action of these forces.

Sum of horizontal forces: 6 � 12 � 6 � 0

Sum of vertical forces: �3 � 3 � 6 � 0

Taking clockwise moments, A: M � �12 � 1 � 6 � 2 � 3 � 2 � �6 � 1

� �12 � 12 � 6 � 6

� 0

The horizontal and vertical components of the resultant force are both zero, and the sum of the moments is also
zero. Therefore the lamina will be in equilibrium.

�

Example 8
Find the magnitude and position of the additional
force, P, needed to maintain the equilibrium of
the lamina under the action of the forces shown.

As we are trying to achieve equilibrium, we can equate 
the components of the forces in each direction.

Equating horizontal forces: 6 � 6 � 7 � 3 � 2

12 � 12

The horizontal forces already balance.

Equating vertical forces: P � 3 � 5 � 8

P � 3 � 13

� P � 10 N

Taking clockwise moments, T: M � �6 � 2 � �5 � 2 � �8 � 5 � 7 � 2 � 3 � 1 � 3 � 4 � P � d

� �12 � 10 � 40 � 14 � 3 � 12 � Pd

� Pd � 33

� 10d � 33 (since P � 10)

For the sum of the moments to equal zero: 10d � 33 � 0

10d � 33

� d � 3.3 m

�

In the case above, the lamina was already in equilibrium.
Now let’s try an example where we must identify the single additional force
required to bring about equilibrium.

CB

A
D

3

4 m

2 m

6

6

6

3

12

3

3
P

2

6

6

5
8

6 m

d

2 m

7

T

Q R

S

These final two examples include more forces than might be expected in an
examination question, where only parallel forces will be used.
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Summary
● Statics is the study of stationary particles or rigid bodies.
● Static equilibrium is the state of rest where there is no translation or rotation.
● Conditions for equilibrium of a particle:

the resultant force must be zero (i.e. R � 0 � 0i � 0j)
or the component of the resultant force in any direction must be zero.

● Additionally, for equilibrium of a rigid body:
the sum of the moments about any point must be zero. (i.e. M � 0, about any point)

End of Chapter Questions
1 Can you complete these sentences?

a) The two types of equilibrium are … equilibrium
and … equilibrium.

b) The study of how forces keep objects stationary
is called …

c) Forces all acting in the same plane are called …
forces.

d) The least (non-zero) number of forces required
to maintain equilibrium is … .

e) For equilibrium, the … force must be zero.

f) For equilibrium, the … of the resultant force in
any direction must be zero.

g) For equilibrium of a rigid body, the sum of the …
must be zero.

h) If a body is in equilibrium under the action of
three forces, they will form a …

2 If a mass is at rest on a horizontal surface and no
other forces are acting, which two forces must be
equal in magnitude.

3 Two forces F1 and F2 act on a rigid body. If 
F1 � 16i N and F2 � �16i N, what other property is
needed to ensure equilibrium?

4 A particle is at rest under the action of three
coplanar forces, F1, F2 and F3. If F1 � (21i � 5j) N
and F2 � (�8i � 37j) N, find F3 in unit vector
form.

5 Two forces, F1 and F2 act on a body. A third force,
F3, is added to the system to bring about
equilibrium.
If F1 � (�34i � 25j) N and F2 � (22i � 30j) N, find
F3 in unit vector form.
Calculate the magnitude of F3 and its angle
measured clockwise from the i direction.

6 A paraglider of mass 130 kg (including kit) is
descending at a constant speed. If he is 
supported by two cables, each of which make an
angle of 18° outwards from the upward vertical
direction, find the magnitude of the tension in each
cable. (Take g � 9.8 m s�2.)

7 A rectangular lamina 2 m by 4 m is at rest in
equilibrium under the action of the forces shown in
the diagram. Find the magnitude of the force Q and
the distance d of its line of action from A.

8 Each diagram shows a particle of weight 20 N held
at rest on a smooth inclined plane by a force F. In
each case find the value of F.

a) b)

1N

5N

2N4N

Q

d
6N

D

A B

C

30°

F

45°

F
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9 A body is acted upon by the forces (4i � 5j) N,
(16i � 3j) N and (pi � 8j) N. Given that the
resultant force is parallel to the vector (3i � j),

a) find the value of p.

A fourth force F is then added so that the body is
now in equilibrium,

b) find the magnitude of F.

10

A particle of mass 500 g is attached to one end of
each of two light inextensible strings. The particle
hangs at rest in equilibrium and the strings make
angles of 30° and 60° with the horizontal. Find, to
3 s.f., the tension in each string.

11 A particle of weight 40 N is attached to one end of
a light inextensible string. The other end of the
string is attached to a fixed point on a ceiling. The
particle is held in equilibrium, with the string at an
angle of 30° with the downward vertical, by a
horizontal force F.

a) Find, to 3 s.f., the tension in the string.

b) Find, to 3 s.f., the value of F.

12 A particle is maintained in equilibrium under the
action of three forces P, Q and R. The force
P � (3i � j) N. Given that Q is parallel to the vector
(�2i � 3j) and R is parallel to the vector (i � 2j),
find Q and R.
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How to make the Examiner happy
● Make it clear whether you are going to show that the resultant force is equal to zero, or whether the

components in each direction total zero.
● Use a letter to represent any unknown lengths, e.g. when a man walks part of the way along a beam.
● As you can choose any point for taking moments, use the one which has the most forces (or any unknown

forces) acting through it.
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Revision Questions
Bank A

1 Two constant forces F1 and F2 are given by
F1 � (2i � 6j) N and F2 � (ai � 2aj) N.
a) Find the angle between F1 and i. (3)

The resultant R of F1 and F2 is parallel to j.
b) Find the magnitude of R. (4)

2 [In this question, the horizontal unit vectors i
and j are directed due east and due north
respectively.]

At 3 pm cyclist C has position vector (�9i � 6j) km
and is moving with constant velocity
(3i � 12j) km h�1 and cyclist D has position vector
(16i � 6j) km and is moving with constant velocity
(�9i � 3j) km h�1.
a) Find how far apart the cyclists are at 3 pm. (1)
b) Write down the position vectors of C and D

after a further t hours. (3)
c) Hence find the vector from C to D after a

further t hours. (2)
d) At what time will C be due north of D? (3)

3 A lorry accelerates along a straight horizontal road
from a speed of 14 m s�1 to a speed of 34 m s�1 in
20 s.
a) Find how far the lorry travels during this 20 s

period. (2)
b) Find how long it takes to cover half of this

distance. (7)

4

A particle A of mass 3m is at rest on a rough
horizontal table. The particle  is attached to one
end of a light inextensible string which passes over
a small smooth fixed pulley P which is at the edge
of the table. Another particle B of mass 2m is
attached to the other end of the string and hangs
freely. The line AP is perpendicular to the edge of
the table and A, P and B all lie in the same vertical
plane. The system is released from rest with the
string taut when A is 1.1 m from the edge of the
table and B is 1 m from the floor, as shown in the
figure. Given that B hits the floor after 2 s and does
not rebound

a) find the acceleration of A during the first 2 s of
the motion, (2)

b) find, to two decimal places, the coefficient of
friction between A and the table. (9)

c) Determine, by calculation, whether A reaches
the pulley. (7)

5 A particle P of mass 2 kg is pushed by a constant
horizontal force of magnitude 40 N up a line of
greatest slope of a rough plane which is inclined to
the horizontal at an angle �, where tan � � �

3
4�. The

coefficient of friction between P and the plane is �
1
5�.

Find
a) the magnitude of the normal reaction between P

and the plane, (4)
b) the acceleration of P. (4)

6 A uniform rod AE, of length 0.8 m and mass 2 kg,
rests horizontally on two smooth supports placed
at B and D. Given that AB � 0.1 m and DE � 0.2 m,
find
a) the thrust on the support at B, (3)
b) the thrust on the support at D. (2)

When a load of mass M kg is attached to the rod at
the point A, the rod is about to tilt about the point
B. When the load of mass M kg is attached to the
rod at a point x cm from E, the rod is about to tilt
about the point D. Find the value of
c) M, (5)
d) x. (3)

7 A particle is suspended by two light inextensible
strings and hangs in equilibrium. The first string is
inclined at 60° to the horizontal and the tension in
that string is 30 N and the second string is inclined
at 30° to the horizontal. Find, to 3 significant
figures,
a) the weight of the particle, (3)
b) the tension in the second string. (3)

8 A block of mass 4 kg is placed on a plane inclined
at an angle of 30° to the horizontal. The coefficient
of friction between the block and the plane is 0.2.
a) Show that the block will slide down the 

plane. (4)
b) Find the magnitude of the least horizontal

force that is needed to prevent it sliding down
the plane. (7)

9 A cannon of mass 600 kg lies at rest on a rough
horizontal plane. It is used to fire a 2 kg shell
horizontally with an initial speed of 300 m s�1.
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a) Find the magnitude of the impulse exerted on
the shell by the cannon. (2)

b) Find the initial speed of recoil of the 
cannon. (2)

Given that the cannon travels a distance of 10.2 cm
before coming to rest,
c) find, to 1 decimal place, the coefficient of

friction between the cannon and the plane. (6)

10 A particle A of mass 2m is moving on a smooth
horizontal floor with speed u. Another particle B of
mass km is moving on the floor with speed 3u in
the opposite direction. The two particles collide
directly and as a result of the collision the
directions of motion of both particles is reversed
and the speed of A is halved. Find
a) the range of possible values of k, (5)
b) the magnitude of the impulse on A from B. (3)

Bank B

1 A particle P of mass 0.5 kg is acted upon by two
horizontal forces (2i � 3j) N and (2i � 6j) N where
i and j are unit horizontal vectors due east and due
north respectively. Find
a) the magnitude of the acceleration of P, (4)
b) the direction of the acceleration of P, giving

your answer as a bearing to the nearest 
degree. (3)

At time t � 0, P is at the point with position vector
(i � 2j) m and is moving with velocity �11i m s�1.
Find, when t � 2,
c) the speed of P, (4)
d) the position vector of P. (3)

2 A cricket ball is thrown vertically upwards from
ground level with speed u m s�1 and takes 4 s to
reach the ground again. Neglecting air resistance,
a) draw a velocity–time graph to represent the

motion of the ball during the first 4 s, (2)
b) find the maximum height of the ball above the

ground. (6)

3 A vertical wall is 33 m high. A ball is thrown
vertically upwards from a point on ground level
close to the wall with an initial speed of 25.9 m s�1.
Find for how long the ball will be above the top of
the wall. (7)

4 A particle of mass 2 kg is at rest on a rough
horizontal plane. The coefficient of friction
between the particle and the plane is �

1
4�. A horizontal

force of 18 N is applied to the body for 4 s and is
then removed. Find

a) the speed of the particle after 4 s, (5)
b) the total distance travelled by the body in

coming to rest. (7)

5

Two scale pans, S and T, each of mass 2 kg, are
attached to the ends of a light inextensible string.
The string passes over a small smooth fixed pulley
and the two scale pans hang at rest. A mass M kg is
placed inside S, as shown in the figure. Given that
the acceleration of S downwards is �

1
2�g, find

a) the tension in the string, (3)
b) the value of M, (5)
c) the magnitude of the normal reaction exerted

on the mass by S. (3)

6 A non-uniform rod AB has mass 5m and length 3a.
The rod rests in equilibrium in a horizontal position
on two supports at the points X and Y, where
AX � XY � YB � a. A particle of mass 2m is fixed
to the rod at B. Given that the rod is on the point of
tilting about Y, find the distance of the centre of
mass of the rod from B. (5)

7 A uniform rod AB of mass m and length 6a rests
horizontally between two smooth pegs X and Y. Peg
X is below the rod with AX � 4a and peg Y is above
the rod with YB � a. A particle of mass 3m is hung
from A.
a) A vertical force P acts downwards at B.

i) Draw a clear diagram showing all the
external forces acting on the rod. (2)

Given that the rod is in equilibrium
ii) calculate the greatest possible value of the

magnitude of P. (4)
The force P is replaced by a vertical force Q acting
upwards at B. The peg Y will break if the force on
it exceeds 15mg. Given that the rod is in
equilibrium
b) calculate the greatest possible value of the

magnitude of Q (4)

8 A particle is placed on a rough plane inclined at an
angle � to the horizontal, where tan � � �

3
4�. The

particle is maintained in equilibrium by a horizontal
force of magnitude 20 N which acts in the vertical
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plane containing the line of greatest slope of the
inclined plane through the particle. The coefficient
of friction between the particle and the plane is �

1
2�.

Given that the particle is on the point of slipping
up the plane,
a) find the normal reaction of the plane on the

particle, (4)
b) the weight of the particle. (3)

9

One end of a light inextensible string is attached to
a fixed point O. The other end is attached to a
small body B of weight 10 N. The body B is kept in
equilibrium, with the string making an angle of 30°
with the vertical, by a constant horizontal force of
magnitude F as shown in the figure.
a) Find the magnitude, T, of the tension in the

string. (3)
b) Show that T � 2F. (3)

10 A nail of mass 0.05 kg is driven horizontally into a
fixed block of wood by a hammer of mass 1 kg.
Immediately before striking the nail the hammer is
moving with speed 10.5 m s�1. Assuming that the
hammer does not rebound
a) find the common speed of the nail and hammer

immediately after the blow. (3)

The resistance to the nail when penetrating the
block is modelled as being of constant magnitude
R. Given that the nail is driven 0.07 cm into the
block
b) find the value of R. (5)

Bank C

1

Two forces, P and Q, act on a particle. The
magnitude of P is 6 N and the magnitude of Q is
4 N. The angle between the directions of P and Q is
50° as shown in the figure. The resultant of P and
Q is R.

a) Find, to 3 significant figures, the magnitude 
of R. (5)

b) Find, in degrees to one decimal place, the angle
between the direction of R and the direction 
of Q. (4)

2 A stone is dropped from the top of a building of
height h and hits the ground t seconds later.
Neglecting air resistance,
a) write down an equation relating h and t. (2)

One second later another stone is thrown vertically
downwards from the top of the same building with
a speed of 19.6 m s�1. Given that the two stones
strike the ground at the same time and neglecting
air resistance,
b) write down another equation relating h

and t. (2)
c) Find the height of the building. (4)

3 A train normally travels in a straight line at a
constant speed of 40 m s�1. However, repairs are
being carried out to 1800 m of track between Q
and R. Because of this the speed of the train has to
be restricted to 16 m s�1 on this stretch of track. In
order that the speed of the train is 16 m s�1 when it
arrives at Q, the brakes are applied when the train
is at the point P. The brakes produce a constant
deceleration of 1.5 m s�2. When the train reaches R
it accelerates with constant acceleration so that it
reaches its normal speed of 40 m s�1 at the point S
where RS � 1344 m. Find
a) the time for which the brakes are applied, (3)
b) the distance PQ, (3)
c) the time for which the train accelerates, (3)
d) the total time lost by the train due to the speed

restriction. (4)

4 A car of mass 900 kg tows a caravan of mass
600 kg along a straight horizontal road by means of
a light rigid tow bar. The resistance to motion is
proportional to mass. Given that the caravan
experiences a resistance of 200 N
a) find the resistance experienced by the car. (2)

Given that the acceleration of the system is �
2
3� m s�2,

find
b) the tractive force provided by the engine of the

car, (3)
c) the tension in the tow bar. (3)

When the speed of the car is 16 m s�1 the driver
sees a hazard ahead and applies the brakes to bring
the car to rest. Given that the overall braking force
is 1500 N and that the resistances to the motion of
the car and the caravan remain the same as before,
d) find the distance travelled by the car in coming

to rest, (5)
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e) determine the magnitude and nature of the
force in the tow bar during the braking 
period. (4)

5 A buoy of mass 20 kg is held below the surface of
the water by a vertical rope attached to the sea-
bed. The upward buoyancy force from the water is
244 N. The rope breaks and the buoy rises up to
the surface. In an initial model, the resistance to
motion provided by the water is assumed to be of
constant magnitude 12 N.
a) Find the upward acceleration of the buoy. (3)

In a refined model the magnitude of the resistance
to motion provided by the water is assumed to be
3v2 N where v m s�1 is the speed of the buoy.
b) Find, under this model, the maximum speed of

the buoy on its way to the surface. (5)

6 A window cleaner whose weight is 720 N sits on a
light plank supported by means of two vertical
ropes. The plank is horizontal and the distance
between the ropes is 6 m.
a) Explain why the window cleaner must sit

between the two ropes. (4)
b) Find the tension in each rope when the window

cleaner sits 2 m from one of the ropes. (4)

7 A wooden beam AB rests on two supports, one at A
and the other at B. The beam is in equilibrium and
is horizontal. The beam is modelled as a non-
uniform rod. Given that the support forces at A and
B have magnitudes 120 N and 280 N respectively
and that the length of the beam is 10 m find how
far the centre of mass of the beam is from A. (4)

8 Two particles P and Q are attached to the ends of a
light inextensible string. One of the particles P, of
mass 0.13 kg, is placed on a rough plane inclined
at an angle of 30° to the horizontal. The coefficient
of friction between the particle and the plane is 

. The string passes over a small smooth pulley 

which is fixed at the top of the plane and supports
the other particle Q, of mass m, which hangs freely.
The system is at rest in equilibrium. Given that the
string lies along a line of greatest slope of the plane
and that P is on the point of slipping up the plane
a) find the magnitude of the normal reaction

between P and the plane, (2)
b) the value of m. (5)

9 A body of mass M kg is supported in equilibrium by
two ropes attached to it. One rope is inclined at 30°
to the vertical and the other at 60° to the vertical.
The body is modelled as a particle and the ropes
are modelled as being light and inextensible. Given

that either rope breaks if the tension in it exceeds
4900 N, find, to three significant figures, the
greatest possible value of M. (7)

10 Two particles P and Q of masses 2m and m
respectively are moving towards each other on a
smooth horizontal plane and collide directly.
Immediately before the collision the speed of P is
u. Immediately after the collision, Q rebounds with
speed u in the opposite direction. Given that the
magnitude of the impulse in the collision is 4mu,
find
a) the speed and direction of motion of P

immediately after the collision, (3)
b) the speed of Q immediately before the 

collision. (3)

Bank D

1 A particle P of mass 2.5 kg moves under the action
of a single constant force F. At time t � 0 the
velocity of P is (�2i � j) m s�1 and 2 seconds later
its velocity is (4i � 7j) m s�1.
a) Find, in vector form, the acceleration of P. (2)
b) Find the magnitude of F. (2)
c) Find, to the nearest degree, the acute angle

between the line of action of F and the line
y � x. (4)

2 [In this question, the horizontal unit vectors i
and j are directed due east and due north
respectively.]

The velocity of a particle P at time t seconds is
modelled by the formula

v � (3t2 � 1)i � (7t � 1)j m s�1.

a) Find the direction of motion of P after 2
seconds. (3)

b) At what time is P first moving parallel to the
vector i � j? (6)

3 Two sets of traffic lights on a straight horizontal
road are 2145 m apart. A car takes two minutes to
travel from one set to the other. It starts from rest
from one set and accelerates uniformly for 30 s. It
the moves with constant speed before uniformly
decelerating to rest for the final 15 s.
a) Represent the motion on a speed–time graph. (2)
b) Find the acceleration of the car. (5)

4 The point A is on a rough plane which is inclined to
the horizontal at an angle �, where tan � � �

3
4�. A

particle P of mass 2 kg is projected from A up a line
of greatest slope of the plane with speed 10 m s�1.
The coefficient of friction between P and the plane
is �

1
2�.

1
�
�3�
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a) Find the distance travelled by P before first
coming to rest. (7)

b) Show that P will slide back down the plane. (3)
c) Find the speed of P as it passes through A. (7)

5 A car of mass 2000 kg tows a caravan of mass
800 kg up a slope which is inclined to the
horizontal at an angle �, where tan � � �2

7
4�. The

engine of the car provides a driving force of
constant magnitude 10 000 N and the total
resistance on each of the car and caravan is 150 N
per tonne.
a) Find the acceleration of the car. (4)

The tow bar is modelled as being light, rigid and
inextensible.
b) Find the tension in the tow bar. (3)

6 A uniform beam AB of mass 20 kg and length 2.4 m
is at rest in equilibrium in a horizontal position.
The beam is supported by two vertical ropes XP
and YQ attached to the beam at the points P and Q
where AP � 0.4 m and QB � 0.6 m. Find
a) the tension in XP, (4)
b) the tension in YQ. (2)

7 A non-uniform rod ABC of length 12 m has its mass
distributed such that the weight force acts
downwards from a point G, where AG � 5 m. Three
light strings are attached to the rod at A, B and C
where AB � 8 m. The rod is at rest in equilibrium
with the three strings vertical.
a) Given that the tension in the string attached at

B has magnitude 25 g, find the magnitudes of
the tensions in the other two strings. (4)

b) Find how far the point B would have to be
moved in order for the magnitudes of the
tensions in all three strings to be the same. (4)

8

A broom is being used to sweep a rough horizontal
floor. A force of magnitude F newtons is applied
downwards along the handle and the handle is kept
at a constant angle of 60° to the horizontal as
shown in the figure. The broom head moves along
the floor with constant speed. The handle is
modelled as a light rod and the broom head is
modelled as a particle of mass 0.5 kg.
a) Explain why it is reasonable to ignore air

resistance. (1)

Given that the coefficient of friction between the
broom head and the floor is 0.5
b) find, to 3 significant figures, the value of F. (7)

9 A bullet of mass 100 g is fired into a wooden block
of mass 4.9 kg which lies at rest on a rough
horizontal floor. The bullet enters the block
horizontally at 300 m s�1 and becomes embedded
in it.
a) Find the initial speed of the block. (3)

The block slides along the floor eventually coming
to rest. Given that the coefficient of friction
between the floor and the block is 0.5
b) find, to 3 significant figures, how far the block

slides. (6)

10 A particle P of mass 2m and a particle Q of mass
3m are attached to the ends of a light inextensible
string. The particles are at rest and next to each
other on a smooth horizontal plane with the string
slack. Particle P is then projected along the plane
directly away from Q with a speed 2u.
a) Find the speed of Q immediately after the string

goes taut. (3)
b) Explain how in your calculation you have used

the modelling assumptions that the string is
i) light
ii) inextensible. (2)

c) Find the impulse transmitted through the string
as the string goes taut. (3)
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Page 7 End of Chapter 1
1 a modelling real-life situations

b Define, Model, Analyse, Interpret
c Kinematics, Dynamics, Statics
d particle
e rigid body
f particle
g inelastic
h modelling assumptions

2 Light

3 Lamina

4 A particle has no surface area.

5 Make/model of car, length, colour, number of passengers,
number of doors, roof rack, spoiler fins.

6 Kinematics/moving, Statics/still, Dynamics/changing.

7 Parachuting, dropping a feather, aeroplane flying, hang-
gliding, badminton, etc.

8 Lamina

9 Mass of book, height of window above ground, how book
thrown.

10 Mass of barrel, angle of slope, length of road, how motion
started.

Page 13
1 � s � � 31.0 m (3 s.f.), 110.8° (1 d.p.)

2 17

3 (9.15i � 104.6j) m (3 s.f.)

4 (1.55i � 5.80j) m

Page 18 End of Chapter 2
1 a magnitude b direction

c bold d underlining
e Pythagoras’ Theorem f trigonometry
g sine, cosine h parallel

2 scalar

3 26 units

4 205.2° (1 d.p.)

5 �5.02i � 2.9j (3 s.f.)

6 �� � m (3 s.f.)

7 a � b � � �

8 0, the zero vector

9 � �, � �, � � and � �
10 9i � 6j

11 172 � t2 � 82 → t � �15

12 a 45°

b � � tan�1(�
4
6�) = 33.7° (1 d.p.)

c � � tan�1(�
1
9�) = 6.3° (1 d.p.)

d � � tan�1(�
3
7�) = 23.2° (1 d.p.)

13 a 30 � �
1
5� (3i � 4j) � 18i � 24j

b 5 � �2
1
5� (7i � 24j) � �

7
5�i � �

2
5
4
�j

14 a �1
1
0� (6i � 8j) � 0.6i � 0.8j

b �2
1
5� (7i � 24j) � �2

7
5�i � �

2
2

4
5� j

c (i � j) � i � j

d (�2i � 6j) � i � j

15 �
1
3
2
� = �

�

b
4
� ⇒ b � �1

16 a i � 3j � a(2i � j) � (1 � 2a)i � (�3 � a)j
So, �3 � a � 0 ⇒ a � 3
b b(i � 3j) � 2i � j � (b � 2)i � (�3b � 1)j
So, b � 2 � 0 ⇒ b � �2

17 �
2t

1
� 5
� � �

�(
�

4 �

1
t)

� ⇒ t � 3

6
�
�40�

�2
�
�40�

1
�
�40�

1
�
�2�

1
�
�2�

1
�
�2�

3

7

1

6

4

6�

30
�6

2.5
�0.5

�25
5

5
�1

a � b

a
b

10
�4

223
201

Answers
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18 vA �� vB ⇒ �
t �

1
2

� � �
2t �

t
3

�

⇒ t2 � 2t � 2t � 3
⇒ t2 � 4t � 3 � 0
⇒ (t � 3)(t � 1) � 0
⇒ t � 3 or 1

19 a 10 sin 10i � 10 cos 60°j
� 5�3�i � 5j

�39 sin 30°i � 30 cos 30°j
� �15i � 15�3�j

� R � (5�3� � 15)i � (5 � 15�3�)j
� 5(�3� � 3)i � 5(1 � 3�3�)j

b � R � � 5�(�3� �� 3)2 �� (1 � 3��3�)2�
� 5�3 � 6��3� � 9�� 1 �� 6�3� �� 27�
� 5�40 � 1�2�3��
� 21.9 (1 d.p.)

R � �5(3 � �3�)i � 5(3�3� � 1)j

tan � ��
5
5
(
(
3
3
�
�

3� �

�3�
1
)
)

�� �
3
3
�
�

3� �

�3�
1

�

� Bearing is 180° � �

� 196.8 �197° (3 s.f.)

Page 25
1

0.533 km per minute (3 s.f.)
0.4 km per minute
0.3 km per minute

2 The bucket is raised to the top of the building at a constant
speed.
It remains there for 30 seconds.
It is lowered at a constant speed to ground level.
After 12 seconds, this motion is repeated.
Upwards speed 0.25 ms�1

downwards speed 0.6 ms�1

Page 29 End of Chapter 3
1 a time b distance

c velocity d acceleration
e displacement f multiplying the units on the axes

2 object is stationary

3 6.47 ms�1 (3 s.f.)

4 160 000 m in 8100 s; 19.8 ms�1 (3 s.f.)

5 acceleration is zero, i.e. constant velocity

6

car has travelled 430 m

7

descent velocity 0.511 ms�1 (3 s.f.)

8 a

b Av. speed � �
(7
1
/
8
6)
� � �

10
7

8
� � 15�

3
7� ms�1

c Av. vel. � �
(7

2
/6)
� � �

1
7
2
� � 1�

5
7� ms�1

9 a

b Distance ��
(40 �

2
30)

� .24 � 840 m

c Av. speed � �
8
4
4
0
0

� � 21 ms�1

0
0 6

24

s

t36 40

2
0

0

10

s

t1
2

7
6

0

1

2

2.3

t

S

0 9 10 14
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20
time (seconds)

di
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la
ce

m
en

t 
(m

)

0
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t
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time (seconds)
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d 
(m

s�
1 )

0.5

0

1.0

1.5
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2.5
Km

t
10:00 10:10 10:20

time
10:30 10:40
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�
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10 a

b 100 ��
(10.5

2
� 8.5)
�.V → V � �

2
1
0
9
0

� � 10.5 ms�1 (1 d.p.)

c Total distance � 100 � �
1
2

�.4V � 121.1 m (1 d.p.)

11 a

b Final deceleration � �
2
6

� � �
1
3

� ms�2

c Total 
distance � (4 � 16) � 14 � �

(16
2
� 2)
� � (5 � 2) � (3 � 2)

� 64 � 126 � 10 � 6
� 206 m

Page 39 End of Chapter 4
1 a constant or uniform b SI

c t � … d list
e v2 � u2 � 2as f t

2 540 m

3 68 ms�1, �68 ms�1

4 t � �
v �

a
u

�

5 6�
2
3� ms�1

6 s � vt � �
1
2�at2

7 1200 m

8 0.778 ms�2

9 � � m 137 m (3 s.f.)

10 t � 10 s, a � (�2i � 3j) ms�2

11 s � �
(3 �

2
7)

�.12 � 60 m

12 a 02 � 602 � 2a � 1200

⇒ a � �
3
2

6
4

0
0

0
0

� � 1.5 ms�2

b 0 � 60 � 1.5t ⇒ t � 40 s

13 a �
54

1
k
h
m

� = �
5
3

4
6

0
0

0
0

� = 15 ms�1

b 72 kph � 20 m�1

so, a � �
20

1
�

0
15

� � �
1
2

� ms�2

c s ��
(15 �

2
20)

�.10 � 175 m

14 a 5 � 7T � �
1
2�.4T2 ⇒ 2T2 � 7T � 5 � 0

b (2T � 5)(T � 1) � 0 ⇒ T � 1 or �
5
2�

� Time is 2 seconds (from 0–1 sec and from 2.5–3.5 sec)

15 t : 0 t � 3 t � 5
a

P → Q: 24 � 3u � �
1
2�ax32

⇒ 16 � 2u � 3a �

P → R: 50 � 5u � �
1
2�ax52

⇒ 20 � 2u � 5a �

� � �: 4 � 20 ⇒ a � 2 ms�2

b u � 5 ms�1

16 a 729 � �
1
2� � a � 902 ⇒ a � 0.18 ms�2

b s � 729 � 600v where v � 0.18 � 90
� 16.2 ms�1

� 10 449 m

Page 47
1 9310 N

2 0.8624 N

3 Shuttle cock (and tennis ball)

4 a b

P � Q
R � W

5 F � S � T � Q

R � P � W

6 a � 120 N, b � 347 N (3 s.f.)

7 �22.2mi � 43.7mj

8 R � 339 N (3 s.f.)
T � 196 N

Page 51
1 thrust

2 1040 ms�2

3 50 N

4 2.30 ms�2 (3 s.f.) up the plane

5 a 180 N
b 195.5 N

P

a
R

62g N

180 N

P

Q
R

W

P Q

R

W

P
u

Q R
24 26

�22�
1
2�

135

0
0 8

2

v

t

16

22 27 33

0
0 2

?

v

t10.5 14.5
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6 Throwing the javelin forward will cause him to roll backwards
on his skates.
He could rapidly move one arm or leg backwards as his
throwing arm moves forwards.

7 R � 8090 N (3 s.f.)
a � 0.372 ms�1 (3 s.f.)

Page 56 End of Chapter 5
1 a the centre of the Earth b the Normal Reaction force

c mass, g d motion
e balance/equate f F � ma

g parallel h equal and opposite pairs

2 0.051 N

3 (333i � 411j) N (3 s.f.)

4 a P � 50 N, R � 20 N
b R � 110 N, Q � 315 N
c R � 305 N, T � 110 N

5 4.36 ms�2 (3 s.f.)

6 a 12 � 6a ⇒ a � 2 ms�2

b v � 3 � 2 � 6 ms�1

7 8 � 0.4a ⇒ a � 20
4 � 12 � 20t � 0.4 ⇒ t � �2

8
0�

8 a 15 � 5a ⇒ a � 3 ms�2

b F2 � 152 � 82 � 2 � 15 � 8 � ��
1
2�

� 289 � 120 � 409 ⇒ F � �409�

� a � �
�4

5
09�
� � 4.04 ms�2 (3 s.f.)

c F2 � 42 � 62 � 2 � 4 � 6 cos 70°
� 52 � 48 cos 70° � 35.58
F � 5.965 � a � 1.19 ms�2 (3 s.f.)

9 a 2i � 4j

b � a � � �22 � 4�2� � �20� � 2�5� ms�2

10 a a � �
1
6� (18i � 12j) � 3i � 2j

b v � (2i � 4j) � 4(3i � 2j)
� 14i � 7j

� v � � �142 �� 72� � �245� � 7�5� ms�1

11 a � 2.5 � �
1
5� (3i � 4j) � �

3
2�i � 2j

So, (ai � 3j) � (�i � 17j) � (12i � 6j) � 0.2(�
3
2�i � 2j)

⇒ a � 1 � 12 � 0.3 ⇒ a � �10.7
⇒ 3 � 17 � b � 0.4 ⇒ b � 14.4

12 T � 10 � 0.2 � 2 N

13 R(→), 60 cos 60° � F � 0
⇒ F � 30 N

14 R(←)
0.25� g cos 60° � 0.25�a
4.9 ms�2 � a

15 a ↑2.2 P(↑), for whole system,
F � 5 g � 5 � 2.2 � 11
⇒ F � 60 N

b Fa Q: P(↑), T � 2 g � 2 � 2.2 � 4.4
⇒ T = 24 N

16 a

R(→), 10 000 � 1600 � 2400 � 2000a
3 ms�2 � a

b For trailer: R(→), T � 1600 � 800 � 3
⇒ T � 4000 N

c R(→), �1600 � 2400 � 2000a
⇒ a � �2 ms�2

i.e. deceleration is 2 ms�2

R(←), 1600 � T � 1600
T � 0 N

Page 66 End of Chapter 6
1 a Ns (newton seconds) b impulse

c mass, velocity d constant
e external forces acting f directly

2 coalesce

3 3360 Ns

4 0.0816 Ns

5 13.5 Ns

6 a 0.01054 Ns b 0.120 N (3 s.f.)

7 0.55 ms�1

8 0.66 ms�1

1600

T
800

2

TT

a

1200

24001600

800

3 g

2 g

F

T

T

Q

P

R

a

30°

0.25 g

60°

20 g

R

R
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9 �0.8 � 0.5 (v � 4)
�1.6 � v � 4
⇒ v � 2.4 ms�1

10 a v2 � 2g � 0.6 ⇒ v � �1.2g� � 3.4 ms�1 (2 s.f.)

b I � 2(2.5 � ��1.2g�) � 12 Ns (2 s.f.)

11

(5 � 5) � (2 � 0.2) � (4 � 0.5) � 0.2v
2.9 � 2 � 0.2v
0.9 � 0.20

v � 4.5 ms�1

12 a

CLM: 4 � 35 � 75v
140 � 75v

v � �
1
7
4
5
0

� � �
2
1

8
5
� ms�1

T � 1000 � 40 � �
2
1

8
5
� � 1000 � 8 � �

2
3
8
� � �

224
3
000
� Ns

� �
22

3
4

� kNs

13 a CLM: 9 � 5u ⇒ u � 1.8 ms�1

b For B: T � 2 � 1.8 � 3.6 Ns

14 a → �ve
�T � 0.02 (0 � 500)

T � 10 Ns

b F � �
0
1
.0
0
1

� � 1000 N

15 a v2 � 2 � 3 � 9.8 � 6 g
v � 7.668 …

�T � 4(0 � v)
T � 4v � 30.7 Ns (3 s.f.)

b R � 4g � 4a
R � 4g � 4a

v2 � u2 � 2as

02 � 6g � 2a � �
1

2
00
�

⇒ a � �
60

4
0

� g

� 150 g

� R � 4 g � 600 g � 604 g � 5920 N (3 s.f.)

16

a CLM (→): 3mu � kmu � ��
3m

2
u

� � �
km

2
u

�

6 � 2k � �3 � k
9 � 3k
3 � k

b For Q: (→) T � 3m��
u
2

� � �u�
� 3m � �

3
2
u
� � �

9m
2

u
�

�or � For P: (→) �T � m ���
3
2
u
� � 3u�	

�T � ��
9m

2
u

�

17 CLM:
150 � 4 � (100 � 2u) � (50 � u)

600 � 150u
4 � u

� u � 4

Page 75 End of Chapter 7
1 a surfaces b prevent

c limiting d smooth
e normal reaction f coefficient
g motion h the direction of motion

2 speed, mass

3 0

4 14.4 N

5 0.358 (3 s.f.)

100 g 50 g

4

2u u

3u

mP kmQT T

3u
2

u

u
2

R
a

4g

4 kg

0

T

4 kg

v
4 kg

3 m

500

0

T

1.8 1.8

3

T T
B A

4

35

0

v

40

5

4

P
0.5

2

v

Q
0.2

2.5

1.25

T

0.8

v

0.5

4
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6 300 N

7 Fmax � 23.52 N, tin will not move

8 48.6 N (3 s.f.)

9 i a R � 8 g � Fmax � �
5
7� � 8 g � 56 N

� Friction is 56 N
b a � 0

ii a R � 10 g � Fmax � �
2
5� � 10 g � 4 g � 39.2 N

� Friction is 39.2 N
b 0.8 � 10a ⇒ a � 0.08 ms�2

iii a R � 5 g � Fmax � �
4
7� � 5 g � 28 N

� Friction is 25 N
b a � 0

iv a R � 10 g � Fmax � �
1
2� � 10 g � 49 N

� Friction is 49 N
b a � 0

10 a F � �R � �
1
3� � 6 g � 2 g � 19.6 N � P

b P sin 60° � R � 10 g
P cos 60° � �3�R

so, � � 105

3P � P � 20 g �3�
P � 5 g �3� � 49�3� N

11 R � 2 g cos �
F � 2 g sin �

� �
R
F

� � tan �

� tan � 	 �

so, tan� 	 �
1
2�

� � � 26.6° (3 s.f.)

12

(↖) R � 4 g cos 20° � 5 sin 20°
(↗) 5 cos 20° � 4 g sin 20° � � (4 g cos 20° � 5 sin 20°) � 0

5 � 4 g tan 20° � � (4 g � 5 tan 20°) � 0

⇒ � ��
�

4
5
g
�

�

4
5
g
ta
ta
n
n
2
2
0
0
°
°

�� 0.223 (3 s.f.)

13

�
4
5
T
� � 0.4R ⇒ T � 0.5R

R � �
3
5
T
� � 50 g

� 1.3R � 490
R � 380 N (2 s.f.)

T � 188 N (3 s.f.)
� 190 N (2 s.f.)

14 � � �
1
3�

R � 30 cos 45°
P � 30 sin 45 � 10 cos 45°

� 28.28 N
� 28.3 N (3 s.f.)

Page 86 End of Chapter 8
1 a turn

b distance of the line of action from the pivot
c clockwise, anticlockwise
d zero
e finding the total moment (or taking moments)
f trigonometry
g the total anticlockwise moment

2 fulcrum

3 5.7 Nm

4 72 kg

5 19.2 m (3 s.f.)

6 3.58 Nm clockwise

7 2 m from the other end

8 a 50 � 4 � 2P ⇒ P � 100 N ⇒ Q � 50 N
b 10 � 3 � 2R ⇒ R � 15 N ⇒ S � 5 N
c 420 � 14U ⇒ U � 30 N ⇒ T � 40 N
d 3X � 1500 ⇒ X � 500 N ⇒ W � 200 N

9

a 3 mg� � 50 s�
⇒ m = �

5
3
0
�

b X � 50 g (1 � �
1
3�)

� �
20

3
0 g
�

10 a (↑) P � 160 N
100 � 2.5 � 50 � (2.5 � 4x) � 160(2.5 � x)

250 � 125 � 200x � 400 � 160x
40x � 25

x � �
2
4

5
0� � �

5
8� � 0.6125 m

b Q � 100 N
200 � 40(2 � x)
x � 3 m

11

a 560�
4

� 3 � 1400� x
10

�
1
1

2
0
� � x � ⇒ x � 1.2 m

� From B, 0.8 m

560 1400

5 m 3 m 2 m

x

50 smg

A C B3 m 5 m

45°
30

PR

F

�

4

3
5

�

4 g

50 kg
0.4 R

R

T

4 g

20°

5 N

�R
R

2 g

FR

�

P
�
2�3�

P�3�
�

2
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b

2800 � 8W � 560 � 3
⇒ W � 140 N

12

a M(R), 3T2 � 2 � 180
T2 � 120 N

So, T1 � 60 N
b 0
c 180 � 3 � 2T2 ⇒ T2 � 270 N
d W � 90 N

Page 96 End of Chapter 9
1 a static, dynamic b statics

c coplanar d two
e resultant f component
g moments h triangle

2 Weight and Reaction

3 They must act in the same line

4 F3 � (�13i � 32j) N

5 F3 � (12i � 5j) N,
� F3 � � 13 N, 22.6°

6 670 N (3 s.f.)

7 � Q � � 6 N
d � 1.83 m (3 s.f.)

8 a F � 20 cos 60° � 10 N

b F cos 4�5° � 20 cos 4�5°
F � 20 N

9 a (4i � 5j) � (16i � 3j) � (pi � 8j) � R

⇒ R � (20 � p)i � 6j �� 3i � j

⇒ p � �2
b F � �18i � 6j

� � F � � 6�32 � 1�2� � 6�10� N (19.0 N) (3 s.f.)

10 T1 � 4.9 cos 30° � 4.24 N (3 s.f.)
T2 � 4.9 cos 60° � 2.45 N

11 a

T cos 30° � 40 ⇒ T � � 46.2 N (3 s.f.)

F � T sin 30° � 30° � 23.1 N (3 s.f.)

12 (3i � j) � a(�2i � 3j) � b(i � 2j) � O

⇒ (3 � 2a � b)i � (�1 � 3a � 2b)j � O

⇒ 2a � b � 3
3a � 2b� 1
4a � 2b � 6

a � 5
b � 7

Q = (�10i � 15j) N
R = (7i � 14j) N

Page 98 Revision Bank A
1 a � � 71.6° b |R| � 10 N

2 a 25 km
b rC � (�9i � 6j) � t(3i � 12j)

rD � (16i � 6j) � t(�9i � 3j)

c CD
→

� rD � rC � 25i � t(�12i � 9j)
d Time is 5.05 pm

3 a 480 m b t � 12

4 a a � �
1
2� ms�2 b � � 0.62 (2 d.p.)

c A does reach the pulley

5 a 40 N (2 s.f.) b 6.2 m�2 (2 s.f.)

6 a 0.8 g b 1.2 g
c M � 6 d x � �

4
3
0
�

7 a 20�3� N b 10�3� N

8 a

R(↑), R � 4 g cos 30° � 2 g�3�
� FMAX � 0.2 � 2 g�3�

� 0.4 g�3�
component of weight down plane � 4 g cos 60°

� 2 g
Since 2 g�3� 
 0.4 g�3�, it will slide downplane

b 13 N (2 s.f.)

4 g

30°

R
F

80
�
�3�

F

T

40

30°

T1T2

60°

g1
2

20

45°

R

F

2030°

R

F

180 N

R S

W

T1 T2

P Q
1 m 2 m

6 m

1 m 2 m

N 560 1400

5 3 2 BA
10 m
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9 a 600 Ns b v � 1 ms�1 c � � 0.5 (1 d.p.)

10 a 1 
 k b 3mu

Page 99 Revision Bank B
1 a 10 ms�2 b Bearing � 127°

c 13 ms�1 d �5i � 14j

2 a b h � 19.6 m

3 1 second

4 26.2 ms�1 b 193 m (3 s.f.)

5 a 3g b 4 c 2g

6 �
7
5
a
�

7 a i

ii �
13

2
ms
� � P

b Q � mg

8 a 20 N b 10 N

9 a T � �
20

3
�3�
� N b R(→), T cos 60° � F

⇒ T � 2F

10 a Common speed is 10 ms�1

b R ��
1 00

1
0
4
000
�� 1.05 � 75 000 N

Page 100 Revision Bank C
1 a R � 9.10 N b � � 30.3° (1 d.p.)

2 a h � �
1
2� gt2 b h � 2g(t � 1) � �

1
2� g(t � 1)2

c 11.025 m

3 a 16 s b 448 m c 48 s d 86.7 s

4 a 300 N b 1500 N c 600 N
d 96 m e 600 N (thrust)

5 a 1.8 ms�2 b 4 ms�1

6 a If the window cleaner sat at point P, not between the
ropes, then taking moments about P would mean that
both tensions would be turning the same way and so
equilibrium would be impossible.

b T2 � 240 N
T1 � 480 N

7 7 m

8 a 1.10 N (3 s.f.) b m � 0.13 kg

9 577 (3 s.f.)

10 a u b 3u

Page 101 Revision Bank D
1 a (3i � 4j) ms�2 b 12.5 N c 98°

2 a Direction is NE b t � �
1
3� is first time

3 a b �
1
1

1
5� ms�2

4 a �
1
2
0
g
0

� b 2 g sin � 
 �
4
5
g
�

⇒ will slide down
c 2�5� ms�1

5 a 0.68 ms�2 (2 d.p.) b 2860 (3 s.f.)

6 a 112 N b 84 N

7 a �
25

3
g

� �
80

3
g

� b B moves 5 m towards A

8 a The broom is moving slowly
b F � 37 N (2 s.f.)

9 a v � 6 ms�1 b s � 3.67 m

10 a V � �
4
5
u
�

b i Ignored the momentum of the string
ii Assumed both particles have the same speed

immediately after the string goes taut

c �
12

5
mu
�

0
30

v

t

u

105 120

Pmg3mg

A B3a a a
Y

X

a

0
2

v

t

u

�u

4
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Acceleration: the rate of change of velocity with time.
This is equal to the gradient of a velocity–time graph.

Acceleration–time graph; area under: gives the
change in speed.

Acceleration, uniform: the size or magnitude of the
acceleration must be constant and the direction must
not change.

Area, of a trapezium: is found using the formula
A � �

1
2�(a � b)h where a and b are the lengths of the

parallel sides and h is the perpendicular distance
between them.

Average speed: see Speed, average.

Average velocity: see Velocity, average.

Centre of mass: the position at which the total mass
of a body can be taken as acting.

Coalesce, objects which: two objects which as a
result of a collision stick together and move as one
body afterwards.

Coefficient of friction: see Friction, coefficient of.

Collision: impact between two objects.

Commutative: an operation is commutative if the
result is independent of the order of operation. For
example, multiplication is commutative because the
order does not affect the outcome, 3 � 4 � 4 � 3 � 12.

Components: if the unit vectors in the direction of the
x and y axes are denoted by i and j, then any vector can
be written in the form:

xi � yj or � �
Three dimensional vectors will include a component in
the direction of the z axis. This will be written in the
form:

xi � yj � zk or � �
Concurrent forces: these are forces which act on the
same point.

Connected particles: a simple system of two (or
more) particles connected by a rod or string. They
share the same acceleration if the string is taut.

Conservation of linear momentum: see Principle of
conservation of linear momentum.

Coplanar: when points are all located on the same
plane or surface, they are said to be coplanar. A system
of forces all acting on the same plane is also referred to
as coplanar.

Cosine rule: is a rule for calculating the length of a
side or an angle in a triangle with no right angle:

a2 � b2 � c2 � 2bc cos A or cos A ��
b2 �

2
c
b

2

c
� a2

�

b2 � c2 � a2 � 2ca cos B or cos B ��
c2 �

2
a
c

2

a
� b2

�

c2 � a2 � b2 � 2ab cos C or cos C ��
a2 �

2
b
a

2

b
� c2

�

where a, b and c are the lengths of the sides and A, B
and C are the angles opposite these sides.

Coulomb, Charles Augustin de (1736–1806):
18th century French physicist and military engineer.
Although best known for his work on electricity, he also
developed the accepted principles of friction.

Deceleration (a.k.a. retardation): negative
acceleration.

Density: the ratio of mass to volume. For laminas,
density is the ratio of mass to area.

Dimensional analysis: the examination of units in a
formula, to indicate whether the formula is correct. The
units are given in terms of M, L, T (mass, length, time).

Direction: two vectors in the same direction will be
parallel.

Displacement: this is a vector quantity and it is the
distance travelled by a moving body in a specified
direction. When a body returns to its original position,
the displacement will be zero.

Displacement–time graph; gradient of: gives the
velocity.

Distance: this is a scalar quantity and is given by the
formula:

distance � speed � time (when speed is constant)

Distance–time graph; gradient of: gives the speed.

Dynamic equilibrium: occurs when an object is
moving with constant velocity.

Dynamics: the modelling of motion using forces.

Equilibrium: occurs where there is no change in
motion (see Static and Dynamic equilibrium). For
equilibrium to occur the resultant force must be zero
(balanced forces) and the total moment must be zero.

Explosion: violent separation of two or more objects.

Force: the effect of a force will be to change the
motion of an object.

Force, resultant: the combined effect of two or more
forces.

x
y
z

x
y
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Force, types of: two main types in mechanics, forces
of attraction and contact forces.

Friction: the force which opposes motion when an
object slides along a surface. Friction can prevent
motion from happening provided the applied force does
not exceed the maximum value for friction (�R).

Friction, coefficient of (�): gives a measure of the
roughness between two surfaces in contact.

Fulcrum: see Pivot.

Gravity: the force of attraction between two bodies
due to their mass. This normally means the force of
attraction between an object and the Earth. The force
due to gravity is called weight.

Hinge: a fixed point about which a rigid body may turn.

Impulse–momentum principle:
Impulse � change in momentum 
or I � mv � mu.

Inelastic: does not stretch.

Inextensible: does not stretch.

Impulse: is a force which acts on an object for a short
time. The value of the impulse is given by Ft when the
force is constant. Alternatively, the impulse is equal to
the change in momentum of the object. The SI units of
impulse are newton-seconds, N s.

Kinematics: the modelling of motion using
displacements, velocities and accelerations (not forces).

Lamina: this is a thin plate or sheet of uniform
thickness. Its mass is proportional to its area.

Light: having negligible or no mass.

Limiting equilibrium: occurs when the applied force
on an object is equal to the maximum possible value of
friction (�R). Any increase in the applied force will
cause the object to accelerate.

Magnitude: is the length of a vector.

Mass: the measure of a body’s tendency to oppose
changes in its acceleration.

Modelling: a system where a mathematician works
through a number of stages when solving a problem. The
author of this book has chosen to use DMAI, D standing
for define, M for model, A for analyse and I for
interpret.

Moment: the measure of the turning effect of a force,
it is the product of the force and the perpendicular
distance to its line of action from the point.

Momentum: is the product of an object’s mass and
velocity. The units of momentum are N s or kg m s�1.

Negative rotation: a clockwise rotation.

newton: the SI unit of force. Notice, like all units that
are named after famous scientists, e.g. joule, the
newton unit starts with a lower case ‘n’. However, the
abbreviation is upper case, i.e. ‘N’.

Newton, Sir Isaac (1643–1727): UK mathematician,
astronomer and physicist.

Newton’s first law: a body will continue to remain at
rest or move at constant speed in a straight line unless
an external force makes it act otherwise.

Newton’s second law: a resultant force acting on a
body produces an acceleration which is proportional to
the resultant force, or, the rate of change of linear
momentum of a body is equal to the total applied force.

Newton’s third law: for every action there is an equal
and opposite reaction.

Normal reaction force: contact force that acts at
right angles from the surface at the point of contact.

Particle model: this model ignores the size and shape
of an object. The object’s mass is treated as if it acts at
a single point.

Pivot (a.k.a. fulcrum, or hinge): this is the point
about which an object turns or rotates.

Positive rotation: an anticlockwise rotation.

Principle of conservation of linear momentum
(CLM): states that the momentum during a collision
remains constant as long as all motion remains in a
straight line.

mauA � mbuB = mAvA � mBvB

Proportion: for example, when resistance is
proportional to speed, then R � v giving R � kv where k
is the constant of proportion.

Radian: angular measure defined as the angle at the
centre of a sector whose arc length is equal to the
radius of the circle.

Resolving forces: separating a single force into two
perpendicular components.

Resultant force: see Force, resultant.

Resultant vector: see Vector, resultant.

Resultant velocity: see Velocity, resultant.

Retardation: see Deceleration.

Rigid body: a simple shape with fixed lengths which
do not change.

Rod: a simple model for a shape as a line with no
thickness and a fixed length.

Rotation: a movement about an axis either in a
positive or negative direction, where each point on the
rotating body keeps a fixed distance from the axis (see
positive and negative rotation).

12 Glossary pp 111-113.qxd  26/1/05  5:08 pm  Page 112



113

Rough surfaces: two surfaces are said to be rough
when a frictional force acts to oppose motion.

Scalar: a quantity which has size, but no direction.

Sine rule: a rule for calculating lengths and angles in
triangles.

�
sin

a
A

� � �
sin

b
B

� � �
sin

c
C

� or �
sin

a
A

� � �
sin

b
B

� � �
sin

c
C

�

where a, b and c are the lengths of the sides and A, B
and C are the angles opposite these sides.

Smooth surface: surfaces are said to be smooth when
the frictional force is negligible.

Speed, average: the distance travelled per unit of time:

average speed ��
to

t
t
o
al
ta
d
l
is
ti
t
m
an

e
ce

�

Speed–time graph, area under: gives the distance
travelled.

Speed–time graph, gradient: gives the acceleration.

Standard form (a.k.a. standard index form):
a method of writing very large or very small numbers in
the form of a � 10n, where 1 � a 	 10.

Static equilibrium: occurs when an object is
stationary and remains so under the action of several
forces.

Statics: the study of stationary equilibrium and
structures in mechanics. Static means stationary, or not
moving.

Strut: is a rod which is in compression. A strut exerts
a thrust.

Surd: the square root of a number that cannot be
written as a single fraction, e.g. �2�.

Système International (SI) units: the standardised
system of metric units, including metres, seconds, kg.

Tension: an internal force in a body which tries to
prevent the body being stretched.

Thrust: an internal force in a body which tries to
prevent the body being compressed.

Translation: a movement of an object where the
characteristics of size and orientation of the object are
maintained.

Triangle of forces: when three forces acting on a
body in equilibrium are joined head to tail, they form a
triangle. This triangle of forces can then be used to
solve the problem using geometry.

Variation: see Proportion.

Vector: a quantity that has magnitude and direction,
e.g. a speed of 60 km h�1 on a bearing of 045°. Vectors
obey the parallelogram rule of addition.

Vector, position: is the displacement of a body 

measured from a fixed origin, e.g. OP
→

is the position
vector of point P from a fixed point O.

Vector, resultant: the combined effect of two or more
vectors.

Vector, unit: possesses a magnitude of one unit and
can point in any direction. It is usual to denote the unit
vector in the positive x-direction by i, the unit vector in
the positive y-direction by j and the unit vector in the
positive z-direction by k.

Vector, zero: this is the vector whose components are
all zero. It is denoted as 0 or 0.

Velocity, average: ratio of distance travelled in a
particular direction to the time taken for the journey.

Velocity, resultant: the combined effect of two or
more velocities.

Velocity–time graph, area under: gives the
displacement.

Weight: the force of attraction between the Earth and
an object. The weight of an object equals mg, where m
is the mass of the object in kg and g is the acceleration
due to gravity, in m s�2.
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Book Date
Unit What I should know.... page revised

Mathematical ● The common mathematical models; particle, rod, lamina, rigid body
Models in ● The related common modelling attributes; light, uniform, non-uniform, 
Mechanics smooth, inextensible

● Other models; pulley, bead, peg, wire
● That for a particle model, air resistance, rotation and length are ignored
● That for a rigid body, lengths always remain constant

Vectors in ● That a vector has both magnitude and direction
Mechanics ● That a scalar quantity has only magnitude

● How to write a vector in component form using unit vectors (i and j), 
as a column vector or using end-point notation

● How to find the magnitude and direction of a vector given in component 
form

● How to resolve into perpendicular components a vector given as a 
length and a direction

● How to add and subtract vectors and represent this on a vector diagram
● That scalar multiples of a vector are parallel
● How to use vectors to represent displacement, velocity, acceleration 

and various forces

Kinematics ● How to draw the following graphs: distance–time, displacement–time, 
speed–time, velocity–time, acceleration–time

● The meaning of the gradient on each of these types of graphs
● The meaning of the area under each of these types of graphs
● How to use dimensional analysis of the units to find the appropriate 

units for area or gradient on a graph
● How to use the Uniform Acceleration Formulae, identifying which one 

to use for a given problem
● How to use the Uniform Acceleration Formulae in vector form (avoiding 

using v2 � u2 � 2as)
● That motion under gravity is a particularly common example of 

uniformly accelerated motion

Forces ● The properties of a Force
● How to represent forces using vectors
● How to resolve forces into perpendicular components
● How to add and subtract forces expressed in components
● The definitions and applications of the following forces; weight, friction, 

tension, thrust, normal reaction
● That 0 � F � �R, where � is the coefficient of friction
● How to find the moment of a force about a point when the force is 

perpendicular to the distance and when it is at an angle to the distance
● How to calculate the sum of the moments of several coplanar forces
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